July 20th, 2021 (15:30 | SR 2): CT-Talk with Marcin Bieńkowski

on "A Nearly Optimal Deterministic Online Algorithm for Non-Metric Facility Location"


In the online non-metric variant of the facility location problem, there is a given graph consisting of a set F of facilities (each with a certain opening cost), a set C of potential clients, and weighted connections between them. The online part of the input is a sequence of clients from C, and in response to any requested client, an online algorithm may open an additional subset of facilities and must connect the given client to an open facility.

We give an online, polynomial-time deterministic algorithm for this problem, with a competitive ratio of O(log |F| * (log |C| + log log |F|)). The result is optimal up to loglog factors. On the technical side, we design an algorithm for a fractional relaxation of the non-metric facility location problem with clustered facilities. To handle the constraints of such non-covering LP, we combine the dual fitting and multiplicative weight updates approach. By maintaining certain additional monotonicity properties of the created fractional solution, we can handle the dependencies between facilities and connections in a rounding routine.


Joint work with Björn Feldkord and Paweł Schmidt, published at STACS 2021.