
Predictable Data Communications with (Self-)Adjusting Networks

Stefan Schmid (University of Vienna, Austria)

Predictable Data Communications with (Self-)Adjusting Networks

Stefan Schmid et al., ideas from, e.g.,: Chen Avin (BGU, Israel) and Jiri Srba (Aalborg University, Denmark)

Predictable Data Communications with (Self-)Adjusting Networks

Stefan Schmid et al., more recently also: Bruna Peres, Olga Goussevskaia, Kaushik Mondal

Networks and requirements have evolved…

1

Early Internet users:

Kleinrock

Networks and requirements have evolved…

Early Internet users:

Kleinrock
Credits: Oliver Hohlfeld

Today‘s Internet users

QoE: The Network Matters

• Trend toward data-centric …
– Social networks, multimedia, financial services, …

• … network-hungry applications
– Batch processing, streaming, scale-out DBs, distributed machine learning, …

• Application performance and QoE critically depend on network

2

How to Provide Predictable Performance If

3

How to Provide Predictable Performance If

• Application performance critically
depends on network…

• … but there can be failures?

• … but bandwidth demand is
unpredictable?

• … executions are unpredictable?

• … systems / models are complex?

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

3

Complex failover (especially if distributed):

packet reordering, timeouts, disconnect?

How to Provide Predictable Performance If

• Application performance critically
depends on network…

• … but there can be failures?

• … bandwidth demand is
unpredictable?

• … executions are unpredictable?

• … systems / models are complex?

3

Complex congestion control? Idealized!

How to Provide Predictable Performance If

>50% variance in
speculated tasks

>20% variance in
runtime

• Application performance critically
depends on network…

• … but there can be failures?

• … bandwidth demand is
unpredictable?

• … executions are unpredictable?

• … systems / models are complex?

3

Complex algorithms! E.g., speculation.

How to Provide Predictable Performance If

• Application performance critically
depends on network…

• … but there can be failures?

• … bandwidth demand is
unpredictable?

• … executions are unpredictable?

• … systems / models are complex?

3

E.g., web page load latency depends on

network hypervisor!

Roadmap

000

Roadmap

• Predictable performance under uncertainty is hard

• Observation: at the same time, networks become
more flexible! Idea: exploit for predictability…

• … but it can be hard for humans:

a case for formal methods? Hot right now (and here!)

• … but that can even be hard for computers: so?!

000

Flexibility

“Prediction is difficult,
especially about the future.”

Nils Bohr

Especially quantitative aspects
but important for QoE!

5

Ensuring Predictable Performance Under
Uncertainty is Hard

Ensuring Predictable Performance Under
Uncertainty is Hard

Proposal: Exploit flexibilities!
Self-adjust to compensate and improve.

5

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc.

Flexibility of communication networks
6

DD

• Destination-based

• Shortest paths

• Arbitrary paths

• “simple paths”

• Waypoint routing
• Application-aware (TCP port)

WAN optimizer

Routing and TE:
MPLS, SDN, etc.

Flexibility of communication networks
6

DD

• Destination-based

• Shortest paths

• Arbitrary paths

• “simple paths”

• Waypoint routing
• Application-aware (TCP port)

WAN optimizer

Routing and TE:
MPLS, SDN, etc.

More alternatives routes, more capacity, etc.

Flexibility of communication networks
6

DD

• Destination-based

• Shortest paths

• Arbitrary paths

• “simple paths”

• Waypoint routing
• Application-aware (TCP port)

WAN optimizer

Routing and TE:
MPLS, SDN, etc.

More alternatives routes, more capacity, etc.

Flexibility of communication networks
6

Charting the Algorithmic Complexity of Waypoint
Routing. SIGCOMM CCR 2018.

Tomographic Node Placement Strategies and the
Impact of the Routing Model. SIGMETRICS 2018.

Routing and TE:
MPLS, SDN, etc.

Also: flexible Fast
Re-Routing (FRR)
algorithms

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

Flexibility of communication networks
6

10
20

11
21Push 10

Push 20

Routing and TE:
MPLS, SDN, etc.

Also: flexible Fast
Re-Routing (FRR)
algorithms

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

2230|11
30|21

11
21

31|11
31|21

Push 30

pop

Flexibility of communication networks
6

10
20

11
21

Routing and TE:
MPLS, SDN, etc.

Also: flexible Fast
Re-Routing (FRR)
algorithms

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Push 30

Push 40

pop pop

Flexibility of communication networks
6

10
20

11
21

Routing and TE:
MPLS, SDN, etc.

Also: flexible Fast
Re-Routing (FRR)
algorithms

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Push 30

Push 40

pop pop

Flexibility of communication networks
6

10
20

11
21

Fast & high
capacity!

Routing and TE:
MPLS, SDN, etc. Flexible placement

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc.

Workload 1

Realization and Embedding

Virtualization and Isolation

Workload 2

Flexible placement Improved utilization

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration

Communication Graph (e.g., VMs on servers with 4 cores):

3

1

5

2

6
4

1

5

If more communication (1,3),(3,4),(2,5) but less (5,6): migrate!

Reduced resource
consumption,
better latency, etc.

t=1 t=2

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration

Flexibility of communication networks

monitor
progress

up/downgrade

Monitor and react according
to performance needs.

Automatic reconfiguration given
current resources demand.

Kraken: Dynamic scale-out / scale-in (requires migration)

6

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration Topology reconfiguration

The new
frontier!

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration Topology reconfiguration

t=1

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration Topology reconfiguration

t=2

Flexibility of communication networks
000

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration Topology reconfiguration

t=2

Less resources
and latency

Flexibility of communication networks
6

Routing and TE:
MPLS, SDN, etc. Flexible placement Flexible migration Topology reconfiguration

t=2

Less resources
and latency

Flexibility of communication networks
6

Since this is the latest trend, let’s have a closer look:
A Brief History of Self-Adjusting Networks

Demand-Oblivious

Fixed

Demand-Aware

Fixed Reconfigurable

7

Focus on datacenters but more general…

Traditional Networks
• Lower bounds and hard trade-offs,

e.g., degree vs diameter

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies:
provide full bisection bandwidth

8

Traditional Networks
• Lower bounds and hard trade-offs,

e.g., degree vs diameter

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies:
provide full bisection bandwidth

Vision: DANs and SANs
• DAN: Demand-Aware Network

– Statically optimized toward the
demand

• SAN: Self-Adjusting Network

– Dynamically optimized toward the
(time-varying) demand

TOR switches

Mirrors

Lasers

8

Empirical Motivation

Heatmap of rack-to-rack traffic
ProjecToR @ SIGCOMM 2016

• Real traffic pattners are far from
random: sparse structure

• Little to no communication
between certain nodes

A case for DANs!

• But also changes over time

A case for SANs!

Structure :-)

9

Empirical Motivation

Heatmap of rack-to-rack traffic
ProjecToR @ SIGCOMM 2016

• Real traffic pattners are far from
random: sparse structure

• Little to no communication
between certain nodes

A case for DANs!

• But also changes over time

A case for SANs!

Structure :-)

9

Analogous to Datastructures: Oblivious…

Demand-Oblivious

Fixed

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root,
uniformly and independently of their
frequency

many many many many

Many requests
for leaf 1…

… then for
leaf 3…

many

12

Demand-Oblivious

Fixed

many many many many

Many requests
for leaf 1…

… then for
leaf 3…

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root,
uniformly and independently of their
frequency

many

Amortized cost corresponds
to max entropy of demand!

Analogous to Datastructures: Oblivious…

12

Demand-Aware

Fixed Reconfigurable

• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• Optimize: place frequently accessed
elements close to the root
– Recall example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• E.g., Mehlhorn trees

• Amortized cost O(loglog n)

Amortized cost corresponds
to empirical entropy of demand!

loglog n

… Demand-Aware …

12

Demand-Aware

Fixed Reconfigurable

• Demand-aware reconfigurable BSTs
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e.,
O(1)
– Recall example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Self-adjusting BSTs e.g., useful for
implementing caches or garbage
collection

… Self-Adjusting!

12

Datastructures

Oblivious Demand-Aware Self-Adjusting

Lookup O(log n) Exploit spatial locality:
empirical entropy O(loglog n)

Exploit temporal locality as well:

O(1)

13

Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander):

route lengths O(log n)

Exploit spatial locality: Route
lengths depend on

conditional entropy of demand

Exploit temporal locality as well

14

Oblivious Networks…

Demand-Oblivious

Fixed

• Traditional, fixed networks (e.g. expander)

• Optimize for the worst-case

• Constant degree: communication partners
at distance O(log n) from each other,
uniformly and independently of their
communication frequency

• Example

demands:

15

Oblivious Networks…

• Traditional, fixed networks (e.g. expander)

• Optimize for the worst-case

• Constant degree: communication partners
at distance O(log n) from each other,
uniformly and independently of their
communication frequency

• Example

demands:

Conditional entropy constant:
DANs would be much better!

15

Demand-Oblivious

Fixed

… DANs …

• Demand-aware fixed networks can
take advantage of spatial locality

• Optimize: place frequently
communicating nodes close

• O(1) routes for our demands:

Demand-Aware

Fixed Reconfigurable

16

Demand-Aware

Fixed Reconfigurable• Demand-aware reconfigurable
networks can additionally take
advantage of temporal locality

• By moving communicating
elements close

… SANs!

Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

Diving a Bit Deeper: DAN
Workload: can be seen

as graph as well.

18

Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

Much from 4 to 5.

Makes sense to add link!

Diving a Bit Deeper: DAN

18

Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

1 communicates to many.

Bounded degree: route
to 7 indirectly.

Diving a Bit Deeper: DAN

18

Demand matrix: joint distribution

So
u
rc
es

Destinations

DAN (of constant degree)

design

4 and 6 don’t
communicate…

… but “extra” link still
makes sense: not a

subgraph.

Diving a Bit Deeper: DAN

18

Example: Self-Adjusting
Network (SANs) Trees

t=1 t=2

1 4

2

5

7

4

7

5

2

1

adjust

Challenges: How to minimize reconfigurations?
How to keep network locally routable?

New connection!

000
SplayNet: Towards Locally Self-
Adjusting Networks. TON 2016.

Lower Bound: Idea
• Proof idea (EPL=Ω(HΔ(Y|X))):

• Build optimal Δ-ary tree for each
source i: entropy lower bound
known on EPL known for binary trees
(Mehlhorn 1975 for BST but proof
does not need search property)

• Consider union of all trees

• Violates degree restriction but valid
lower bound

19

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)})

Ω(HΔ(Y|X))

Lower Bound: Idea

20

(Tight) Upper Bounds: Algorithm Idea

v

u
w

h

u v w

high-high• Idea: construct per-node
optimal tree
– BST (e.g., Mehlhorn)

– Huffman tree

– Splay tree (!)

• Take union of trees but
reduce degree
– E.g., in sparse distribution:

leverage helper nodes between
two “large” (i.e., high-degree)
nodes

21

Demand-Oblivious

Fixed

Unknown

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

AlgorithmOFF ONSTAT GENOBL

Uncharted Space

Toward Demand-Aware Networking: A Theory for
Self-Adjusting Networks. ArXiv 2018.

Can compare to static
or dynamic baseline!

22

Managing Flexible Networks is
Hard for Humans

23

Human Errors

We discovered a misconfiguration on this pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed incorrectly […] more “stuck” volumes
and added more requests to the re-mirroring storm.

Service outage was due to a series of internal network events that corrupted
router data tables.

Experienced a network connectivity issue […] interrupted the airline's
flight departures, airport processing and reservations systems

Credits: Nate Foster

Datacenter, enterprise, carrier networks: mission-critical infrastructures.
But even techsavvy companies struggle to provide reliable operations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
at

ac
e

n
te

r

Example: Keeping Track of (Flexible)
Routes Under Failures

Example: BGP in
Datacenter

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 25

D
at

ac
e

n
te

r

Internet

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Cluster with services that
should be globally reachable.

Cluster with services that should
be accessible only internally.

Example: Keeping Track of (Flexible)
Routes Under Failures

Example: BGP in
Datacenter

25

Example: Keeping Track of (Flexible)
Routes Under Failures

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

25

Example: Keeping Track of (Flexible)
Routes Under Failures

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

What can go wrong?

25

Example: Keeping Track of (Flexible)
Routes Under Failures

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

If link (G,X) fails and traffic from G is rerouted via Y
and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)

25

The Case for Automation!
Role of Formal Methods?

Managing Flexible Networks is
Hard for Humans

26

Example: MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

27

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

Example: MPLS Networks

27

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Default routing of
two flows

• MPLS: forwarding based on top label of label stack
push swap swap pop

pop

Example: MPLS Networks

27

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20

28

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal
swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21 28

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal
swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

What about multiple link failures?

28

2 Failures: Push Recursively

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

pop pop 29

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

29

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

29

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size
may grow arbitrarily!

Failover Tables

Flow Table

Protected
link Alternative

link
Label

Forwarding Tables for Our Example

Version which does not
mask links individually!

30

MPLS Tunnels in
Today‘s ISP Networks

31

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and

conditional failover rules.

32

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

32

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

32

Or even more relevant for
QoS/QoE: how long are detours?

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?

32

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via
Iceland (expensive!).

32

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or WAN optimizer)?

A

B

C

Waypoint?

E.g. IDS

32

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

E.g. IDS

… and everything even under multiple failures?!

k failures =

(
𝑛
𝑘
) possibilities

32

So what formal methods offer here?

33

A lot!

MPLS configurations,
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach

34

Leveraging Automata-Theoretic Approach

MPLS configurations,
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

34

Leveraging Automata-Theoretic Approach

MPLS configurations,
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

34000
Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks. INFOCOM 2018.

• Network: a 7-tuple

Mini-Tutorial: A Network Model

Nodes

Links

Incoming
interfaces

Outgoing
interfaces

Set of labels in
packet header

35

Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is: and

Interface
function

• Network: a 7-tuple

35

Mini-Tutorial: A Network Model

• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers.

Routing
function

35

Mini-Tutorial: A Network Model

out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing in Network

• Example: routing (in)finite sequence of tuples

Node
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these
links are down.

v1

h1

v2

h2 h3

in1 in2

35

Pop:

Push:

Swap:

Example Rules:
Regular Forwarding on Top-Most Label

Push label on
stack

Swap top of
stack

Pop top of
stack

36

Failover-Push:

Example Failover Rules

Emumerate all
rerouting options

Failover-Swap:

Failover-Pop:

Example rewriting sequence:

Try default Try first backup Try second backup 37

A Complex and Big Formal Language!
Why Polynomial Time?!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
) many options?!

• Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures =

(
𝑛
𝑘
) possibilities

38

This is not how we will
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
) many options?!

• Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures =

(
𝑛
𝑘
) possibilities

38

A Complex and Big Formal Language!
Why Polynomial Time?!

This is not how we will
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
) many options?!

• Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

The words in our language are sequences of pushdown
stack symbols, not the labels of transitions.

k failures =

(
𝑛
𝑘
) possibilities

38

A Complex and Big Formal Language!
Why Polynomial Time?!

Time for Automata Theory!

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite
Automata (NFAs) when reasoning about the pushdown
automata

• The resulting regular operations are all polynomial time

• Important result of model checking

39

Preliminary Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability
analysis of
constructed PDS

• Using Moped tool

40

YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures

Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

41

But What About Other Networks?!

Rules of general networks (e.g., SDN):

arbitrary header rewriting vs
in x L* → out x L*

The clue: exploit the specific structure of MPLS rules.

(Simplified) MPLS rules:

prefix rewriting

in x L → out x OP

in out

h h’

where OP = {swap,push,pop}

Rules match the header h
of packets arriving at in,

and define to which port out to
forward as well as new header h’.

42

Rules of general networks (e.g., SDN):

arbitrary header rewriting vs
in x L* → out x L*

The clue: exploit the specific structure of MPLS rules.

(Simplified) MPLS rules:

prefix rewriting

in x L → out x OP

in out

h h’

where OP = {swap,push,pop}

Rules match the header h
of packets arriving at in,

and define to which port out to
forward as well as new header h’.

But What About Other Networks?!

42

What about QoS and Quantitative Aspects?

43

• A weighted SDN programming and verification language

• Goes beyond topological aspects but account for:
– actual resource availabilities, capacities, costs, or even stateful operations

s
E.g.: Can s reach t at

cost/bandwidth/latency x?
t

(1,8)

(5,2)

(3,1)

(2,1)

(6,1)

(1,4)
(3,3)

(2,10)

capacity cost

First Approaches: WNetKAT

44

s
E.g.: Can s reach t at

cost/bandwidth/latency x?
t

(1,8)

(5,2)

(3,1)

(2,1)

(6,1)

(1,4)
(3,3)

(2,10)

capacity cost
Nodes do not have to be flow-conserving:
e.g., adding a packet header for tunneling!

• A weighted SDN programming and verification language

• Goes beyond topological aspects but account for:
– actual resource availabilities, capacities, costs, or even stateful operations

44

First Approaches: WNetKAT

s
E.g.: Can s reach t at

cost/bandwidth/latency x?
t

(1,8)

(5,2)

(3,1)

(2,1)

(6,1)

(1,4)
(3,3)

(2,10)

capacity cost
Nodes do not have to be flow-conserving:
e.g., adding a packet header for tunneling!

• A weighted SDN programming and verification language

• Goes beyond topological aspects but account for:
– actual resource availabilities, capacities, costs, or even stateful operations

000WNetKAT. OPODIS 2016.

First Approaches: WNetKAT

In General: Exploiting Flexibilities is Even
Hard for Computers

Part A: Because Algorithmic Problems are
(Computationally) Complex

45

(Waypoint-)Routing is Hard

• Routing through a
waypoint s

t

46

1

1

1 1 1

11

11

(Waypoint-)Routing is Hard

• Routing through a
waypoint

• Greedy fails…

s

t

1

1

1 1 1

11

11
1

46

(Waypoint-)Routing is Hard

• Routing through a
waypoint

• Greedy fails…

s

t

Total length:
2+6=8

1

1

1 1 1

11

11
1 1

46

(Waypoint-)Routing is Hard

• Routing through a
waypoint

• Greedy fails…

s

t

Total length:
4+2=6

1

1

1 1 1

11

11

46

(Waypoint-)Routing is Hard

s

t

Total length:
4+2=6

• Routing through a
waypoint

• Greedy fails…

• NP-hard: reduction
from edge-disjoint
paths

1

1

1 1 1

11

11

46

(Waypoint-)Routing is Hard

s

t

Total length:
4+2=6

• Routing through a
waypoint

• Greedy fails…

• NP-hard: reduction
from edge-disjoint
paths

000
Charting the Algorithmic Complexity of

Waypoint Routing. SIGCOMM CCR 2018.

1

1

1 1 1

11

11

Embedding is Hard

• Embedding problems are often NP-hard

Virtual Network
Generalization of Minimum Linear
Arrangement (min sum embedding
on a line)

Physical Network

000

Charting the Complexity Landscape of Virtual
Network Embeddings IFIP Networking 2018.

Embedding is Hard

• Embedding problems are often NP-hard

Virtual Network
Generalization of Minimum Linear
Arrangement (min sum embedding
on a line)

Physical Network

Demand

DAN (degree 2)

DAN Design

47

1

2

2

1 1

1

1

w

s t

u v

Fast Flow Rerouting is Hard

48

1

2

2

1 1

1

1

w

s t

u v

Flow 1

Fast Flow Rerouting is Hard

48

1

2

2

1 1

1

1

Flow 2

w

s t

u v

Flow 1

Fast Flow Rerouting is Hard

48

1

2

2

1 1

1

1

Flow 2

(Short) congestion-free update schedule?

w

s t

u v

Flow 1

Fast Flow Rerouting is Hard

48

1

2

2

1 1

1

1

w

s t

u v

e.g., cannot update red:
congestion! Need to
update blue first!

Flow 2

(Short) congestion-free update schedule?

Flow 1

Fast Flow Rerouting is Hard

48

1

2

2

1 1

1

1

w

s t

u v

1 1

1

Prepare!

No flow! No flow!

No flow!

Schedule:

1. red@w,blue@u,blue@v

Round 1:

Fast Flow Rerouting is Hard

1

2

2

1 1

1

1

w

s t

u v

1 1

1

2

flow! No flow!

No flow!

Round 2:

Schedule:

1. red@w,blue@u,blue@v

2. blue@s

Fast Flow Rerouting is Hard

1

2

2

1 1

1

1

w

s t

u v

1 1

1

2

Capacity 2: ok!

3

No flow!

Round 3:

Schedule:

1. red@w,blue@u,blue@v

2. blue@s

3. red@s

Fast Flow Rerouting is Hard

1

2

2

1 1

1

1

w

s t

u v

1 1

1

2

Capacity 2: ok!

3

4

Round 4:

Schedule:

1. red@w,blue@u,blue@v

2. blue@s

3. red@s

4. blue@w

Fast Flow Rerouting is Hard

1

2

2

1 1

1

1

w

s t

u v

1 1

1

2

3

4

Note: this (non-trivial)
example was just a DAG,

without loops!

Round 4:

Schedule:

1. red@w,blue@u,blue@v

2. blue@s

3. red@s

4. blue@w

Fast Flow Rerouting is Hard

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Block Decomposition and
Dependency Graph

Flow 2

Flow 1

48

1

2

2

1 1

1

1

w

s t

u v

Just one red block: r1

r1

Block Decomposition and
Dependency Graph

Flow 2

Flow 1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet.

48

1

2

2

1 1

1

1

w

s t

u v

Two blue blocks: b1 and b2

b1 b2

Block Decomposition and
Dependency Graph

Flow 2

Flow 1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet.

48

1

2

2

1 1

1

1

w

s t

u v

Dependencies: update b2 after r1 after b1.

b1 b2
r1

Block Decomposition and
Dependency Graph

Flow 2

Flow 1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet.

48

1

2

2

1 1

1

1

w

s t

u v

Dependencies: update b2 after r1 after b1.

b1 b2
r1

Block Decomposition and
Dependency Graph

Flow 2

Flow 1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet.

000

Congestion-Free Rerouting of Flows on DAGs.
ICALP 2018.

Indeed: Exploiting Flexibilities is Even
Hard for Computers

Part B: Because Reality
(Modelling…) is Complex

49

Reality is Complex

Predictable performance is about more

than just bandwidth reservation!

50

Reality is Complex

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

An Experiment: 2 vSDNs with bw guarantee!

Predictable performance is about more

than just bandwidth reservation!

50

Reality is Complex

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

To enable multi-tenancy,
need network hypervisor:

provides network
abstraction and control

plane translation!

An Experiment: 2 vSDNs with bw guarantee! 50

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Intercepts control
plane messages.

An Experiment: 2 vSDNs with bw guarantee!

Reality is Complex

50

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Translation
could include,

e.g., switch
DPID, port

numbers, …

Translation
could include,

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee!

Reality is Complex

50

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

The network hypervisor can be source
of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee!

Reality is Complex

50

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

Reality is Complex

50

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

Need to Know Your Network Hypervisor

000
perfbench: A Tool for Predictability Analysis in

Multi-Tenant Software-Defined Networks SIGCOMM Poster 2018.

Variance due to Algorithmic Complexity

• Seemingly similar network configurations can result in very different
performance

• For example: match-action or ACLs rules which rely on regular
expressions
– Rule matching algorithm can have exponential runtime for some cases…

– … while others are fast

– In addition: rules may overlap

• OVS relies on slow-/fast-path mechanisms, depending on flow caching scheme
performance can be very different

000
Policy Injection: A Cloud Dataplane DoS Attack.

SIGCOMM Demo 2018.

Indeed: Exploiting Flexibilities is Even
Hard for Computers

The Case for
Demand/Interference/Resource/… -Aware

aka. Data-Driven Networking and ML?!
53

“Demand/Interference/Resource/…” -Aware Networks

53

measure
analyze
control

53

measure
analyze
control

“Demand/Interference/Resource/…” -Aware Networks

Allows to overcome worst-case lower bounds!

Allows to overcome worst-case lower bounds! 000

measure
analyze
control

NeuroViNE: A Neural Preprocessor for Your Virtual
Network Embedding Algorithm.

INFOCOM 2018.

“Demand/Interference/Resource/…” -Aware Networks

o'zapft is: Tap Your Network Algorithm's Big Data!
Big-DAMA 2017.

What if there is no data?!

The Case for Empowerment

54

Empowerment

• Empowerment: infomation-theoretic measure how „prepared“ an
agent is: can adapt to new environments
– Known from robotics

• Agent learns „ different strategies“, so becomes prepared

• If objective function or environment changes: change to different
strategy

000
Empowering Self-Driving Networks.

SIGCOMM Wrksps 2018.

Roadmap

• Predictable performance under uncertainty is hard

• Observation: at the same time, networks become
more flexible! Idea: exploit for predictability…

• … but it can be hard for humans:

a case for formal methods? Hot right now (and here!)

• … but that can even be hard for computers: so?!

000

Flexibility

Thank you!

Nils Bohr

Especially quantitative aspects
but important for QoE!

Further Reading
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.
WNetKAT: A Weighted SDN Programming and Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of Distributed Systems (OPODIS), Madrid, Spain, December 2016.
Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.
Virtual Network Embedding Approximations: Leveraging Randomized Rounding
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.
Logically Isolated, Actually Unpredictable? Measuring Hypervisor Performance in Multi-Tenant SDNs
Arsany Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. ArXiv Technical Report, May 2017.
Empowering Self-Driving Networks
Patrick Kalmbach, Johannes Zerwas, Peter Babarczi, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid.
ACM SIGCOMM 2018 Workshop on Self-Driving Networks (SDN), Budapest, Hungary, August 2018.

See also references on slides!

https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf
https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/vsdn-hypervisor.pdf
https://net.t-labs.tu-berlin.de/~stefan/sdn18.pdf

