
UNIX WORKSHOP

Dimitri Robl

CC BY-NC 2.5 by Rendall Monroe
https://creativecommons.org/licenses/by-nc/2.5/legalcode

This work is licensed under the Creative Commons
Attribution-Non-Commercial 4.0 International License

Version 0.2 August 26, 2019

https://creativecommons.org/licenses/by-nc/2.5/legalcode
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Welcome to this three-day workshopwhichwill teach you the basics of UNIX, (GNU/)Linux,
and the command-line! There is a lot to learn ahead of us, but first, you need to set up
your working environment.

2

Contents
1 Installing a Virtual Machine 5

1.1 Prerequisites . 5
1.1.1 Enable Virtualization . 5
1.1.2 Install Oracle VirtualBox . 5
1.1.3 Getting the Installation Image . 6

1.2 Installing a Virtual Machine Running Debian GNU/Linux 6
2 UNIX, GNU, and Linux 14

2.1 UNIX . 14
2.2 GNU . 15
2.3 Linux . 15

3 Basics 16
3.1 Shells, Terminals, and Commands . 16
3.2 The Filesystem . 20
3.3 Help Utilities . 22

3.3.1 man . 22
3.3.2 info . 23
3.3.3 --help and -h . 24
3.3.4 help and type . 24
3.3.5 which and whereis . 25
3.3.6 whatis . 25
3.3.7 The Internet Is Your Friend . 26

4 The Command-Line 29
4.1 Moving and Looking Around . 30
4.2 Working with Files . 33
4.3 Working with Content . 41

4.3.1 Looking at Content . 41
4.3.2 Creating Content and I/O redirection 43

4.4 Archiving and Compression . 47
4.4.1 Archiving with tar . 47
4.4.2 Compression Utilities . 49
4.4.3 Combining Archiving and Compressing Data 51

4.5 Textfiles, Pipes, Wildcards, and a Little Bit of Regex 52
4.5.1 Of Heads and Tails . 52
4.5.2 Sorting Text and Using Pipes . 54

3

4.5.3 Wild Cards and Gentle Regexes 57
4.5.4 Cutting and Joining . 65
4.5.5 Editors (a.k.a. Religions) . 68

4.6 Processes . 70
4.6.1 Process Control . 72

4.7 Variables and Your Environment . 73
4.7.1 Variables . 73
4.7.2 Your Environment . 75

4.8 Shell Scripting Basics . 78
4.8.1 Syntax of Common Constructs 80

4.9 Installing Programs With and Without Rootly Powers 81
4.9.1 Package Management . 82
4.9.2 Installing Programs from Source 83

5 Final Words 85

4

1 Installing a Virtual Machine
In order to make life easier for you, it won’t be necessary that you install a Linux distri-
bution or distro1 on your harddrive. Instead, we will guide you through the installation
of a virtual machine2 running Debian GNU/Linux. If you already have a working in-
stallation of any Linux distro (either physical or virtual) you can skip this step.

1.1 Prerequisites
In order to use a virtual machine (VM), your physical machine should have at least two
cores, 4GiB of main memory (i.e. RAM) and there should be at least 20GB free space
on your disk. In this case more is always better.

1.1.1 Enable Virtualization

The first thing to check is whether you CPU supports virtualization, and has it activated.
Follow these steps:
1. Boot your computer.
2. Depending on your motherboard press ESC, DEL, ENTER, F2, F10, or F12.
3. Look for an option which says ”Advanced” or ”CPU settings”.
4. Depending on whether you use an Intel or an AMD CPU you will have to enable

Intel Virtualization Technology, Intel VT, VT-x, AMD-V, AMD Virtualization or
similar.

5. Check if this option is enabled and if not, enable it.
6. Save changes and Exit.

1.1.2 Install Oracle VirtualBox

Now you have to install the software to run virtual machines:
1. Download the installer from https://www.virtualbox.org/. It runs on Windows,

OS X, Linux and Solaris hosts.
2. Start the installer and follow the instructions.

1You’ll learn what exactly that means later in the course.
2If you are unfamiliar with this concept you can read the Wikipedia entry about it.

5

https://www.virtualbox.org/
https://en.wikipedia.org/wiki/Virtual_Machine

1.1.3 Getting the Installation Image

The final thing to obtain before the installation can begin is an image to install. Just
download the netinst Debian image and store it somewhere you remember(!), you’ll
need it in a moment.
In case you don’t have an x86_64 architecture 3, installation files for other archite-

tures are available at https://www.debian.org/distrib/netinst. However, it is rather
unlikely that you have a different architecture on a general purpose computer, unless
you are still on a machine running 32-bit x864 or own one manufactured by Apple
before 2006 which has a PowerPC CPU.
Now everything is ready to proceed to the installation!

1.2 Installing a Virtual Machine Running Debian GNU/Linux
To install a VM running Debian GNU/Linux follow the instructions below:
1. Open VirtualBox.
2. Click on the “New” button.

3. Enter a name for your VM, and if this is not automatically done select Type: →
Linux, and Version: → Debian (64-bit).5 Press “Next”.

3To make things less confusing, this architecture is also called x64, AMD64, and Intel 64.
4A.k.a. IA-32, i386.
5If you use a different rchitecture than x86_64 you have to specify this here as well.

6

https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/debian-10.0.0-amd64-netinst.iso
https://www.debian.org/distrib/netinst

4. Select the amount of memory the VM will have. The best value here depends on
what you want to do with the VM and how much RAM your physical machine
has. The default value of 1024Mib (i.e. 1GiB) is sufficient for our purposes, but
you can use more if you want and less if you are very low on physical RAM (i.e.
2GiB or less).

5. Choose how much disk space to give to your VM. This includes several steps:
a) Select “Create a virtual hard disk now” and press “Create”.

b) Leave “VDI (VirtualBox Disk image)” selected and press “Next”.

7

c) Again go with the default “Dynamically allocated” and and press “Next”.

d) You can now change name and location of the file that will be the VM’s
harddisk. If this sounds confusing: What the VM will believe is its disk will
actually be nothing more than a file on the underlying operating system (OS)
you run the VM on.
A reasonable size also depends on your needs and the space you have. If
you plan to really do anything with your VM, we recommend a minimum of
20GB, but if you just need it for this workshop the standard size of 8GB will
suffice.
After you are done, click on “Create”.

8

6. Now you’re back to the main screen, which should look something like this:

Select you newly created VM and press “Start”.
7. A pop-up should appear which asks you to select a start-up disk. Click on the

folder icon and select the Debian GNU/Linux ISO-file you downloaded earlier
(and whose download location you of course remember perfectly well ;)).

9

Press the “Start” button.
That’s it, a new window should pop up and the installation of your new virtual OS can
begin. Select “Graphical Install” and follow the on-screen instructions. There are some
things you should be careful about:
1. The selection of your locale (i.e. the language the system will use) and your key-

board layout – e.g. if you want to use an English system, but a German keyboard
you have to tell the installer.

2. When asked to enter the root password, leave it blank to disable the root account
and use sudo instead. We’ll discuss the details later.

10

3. If you don’t know about disk partitioning leave the defaults intact.

However, in case you install Debian GNU/Linux on real hardware (especially on
a portable device such as a laptop) and not as a VM, we strongly recommend using
the “Guided - use entire disk and set up encrypted LVM” option. This will encrypt
your harddrive which means that every time your PC or laptop starts you will have
to enter a passphrase to decrypt the disk before the OS even boots. This has the
huge advantage that in case your device gets stolen, it will be almost impossible
to access your data if the thief does not your password/passphrase – and no one
should ever know that! Make sure to choose a strong password, where “strong”
means “as long as possible”. You don’t necessarily have to care about special
characters, length is far more important. See here.
The only downside to this is the fact that if you forget or lose your password/passphrase
you yourself also won’t be able to access your data. This is one of the few cases in
which it may be a good idea to write down your password/passphrase on a piece
of paper and store it in some secure place.
Also, don’t worry about the warnings when it says “Write changes to disk” if you
set up a VM. The VM ‘believes’ it has a whole disk to write on and is not aware
that it is actually just a file in the underlying OS. If you followed the instructions
so far, it is not possible to destroy your real hard disk by installing the VM.

4. When you come to select a mirror to download the packages, double-click on
“Austria”

11

https://www.xkcd.com/936/

Then select any mirror. As it says in the description deb.debian.org is usually a
good choice.

5. Once you come to the screen “Software selection” we recommend selecting “Xfce”
or “LXDE” if the VM is on low memory (< 2GiB), as these are very lightweight
GUIs. Otherwise you can stick with the default “Debian desktop environment”.

12

If you run into any problems, use your favorite search engine and look for something
like “Debian installation tutorial”. Most likely you’ll find written instructions as well
as videos on how to do it.

13

2 UNIX, GNU, and Linux
This section seeks to clarify terms you are very likely to encounter pretty soon when
working with any (GNU/)Linux distro. Be prepared that people are very picky about
words, and don’t get discouraged in case you meet a particularly nasty partisan of one
of these wordisms.

2.1 UNIX
In the beginning there was… the desire to play games! Yes, that’s it! In the 1960ies two
MIT students called Dennis Ritchie and Ken Thompson wanted to play the game ”Space
Travel” on their new, but underpowered minicomputer1 PDP-7. To achieve their goal,
they had to tweak the machine a bit and as they were researching operating systems
(OS) at the time anyway, they ended up writing a whole new OS for the PDP-7 which
came to be named UNIX.
UNIX, based on the even older Multics, introduced a lot of new concepts into OS-

design, many of which are still in use today. UNIX was developed by Bell Labs which
where prohibited from selling it under US-law, but in 1983 this decree was lifted and
AT&T, the owner of Bell Labs promply tried to turn UNIX into a product, as it was
already widely used among computer science students and companies they worked for.
However, by this time there were already multiple versions of UNIX around, and one
of the most important of them was developed by researchers in Berkeley; the Berkeley
Software Distribution (BSD).
BSD was sued by AT&T for copyright infringement despite the fact that large parts

of AT&T’s own UNIX implementation was based on code from Berkeley. After a long
legal battle, BSD won its freedom and the base of modern FreeBSD, OpenBSD, NetBSD,
etc. was set.
UNIX finally lost the battle for the PC against Apple and Microsoft, which was very

likely at least in parts based on the law suits.
However, in the server market and in technical and scientific circles, UNIX and its

derivatives continued to be state of the art and remain so today. Netflix’ and What-
sApp’s infrastructure, for example, run on FreeBSD. And Sony’s Playstation 4 also runs
a customized version of FreeBSD.

1”Mini” here indicates that it didn’t fill a whole room.

14

https://en.wikipedia.org/wiki/Multics

2.2 GNU
GNU (GNU’s Not Unix) was founded in 1983 by Richard M. Stallman after he was fed
up with the closed source philosophy of UNIX. He wanted to create an OS that is “free
as in freedom”, meaning it adheres to the four principles of free software, which state
that users have to be
0. able to run the program as they wish, for any purpose.
1. able to study how the program works and can change it according to their wishes.
2. able to redistribute copies to others, either free or for a fee.
3. able to distribute modified versions to others, again either for free or for a fee.
Many tools necessary for a complete OS were created by the GNU project, including
gcc (GNU C Compiler), g++ (GNU C++ Compiler), gdb (GNU Debugger), a shell, and
others.
However, one essential part was incomplete: A working kernel. The kernel is the part

of the OS which interacts directly with the hardware, so without a kernel, an OS can’t
run. Thus, the GNU tools were used on a number of UNIX systems, but a stand-alone
OS was still wanting.
This changed when in 1991 a Finnish computer science student by the name of Linus

Torvalds released a kernel he (eventually) called “Linux”.

2.3 Linux
Linus Torvalds originally released the Linux kernel under a license he created himself,
but in 1992 he re-licensed it under the GPLv2 (General Public License, version 2) which
is a license of the GNU project.
Technology-enthusiasts and academia quickly started using Linux as their kernel and

as soon as it was GPL-ed there existed a full GNU OS with a working kernel. This is
why you may read/hear the term “GNU/Linux”. Be careful here, some people are very
picky about using “Linux” only when referring to the kernel and “GNU/Linux” when
refering to an operating system using a lot of GNU-tools and running Linux as a Kernel.
Linux’ open source nature made it possible that its development proceeded very

quickly with thousands of people contributing code and time. The current major release
of Linux is version 5, the original 5.0 kernel was released in 2019. While Linux is often
hailed as the example of a successful open source project with loads of people sacrific-
ing their spare time to make the Linux kernel better, this is largely obsolete today. For
the kernel releases between 4.8–4.13, 87.7% to 91.8% of the changes have been done
by people who are paid for this by various companies.2 This is not necessarily a bad
thing, it just shows that the IT-industry heavily relies on Linux and therefore actively
develops it and also that Linux today is very far from being a hobbyists’ project but a
mature OS kernel developed mostly by professionals.
2See here. At the time of this writing no report on 2018 was available.

15

https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/

3 Basics
This section will introduce important concepts and words you’ll have to work with,
show you how to help yourself on a (GNU/)Linux system in case you get stuck and
explain the filesystem.
To follow along, please download the training directory at

https://ct.cs.univie.ac.at/teaching/unixlinux-einfuehrungskurs/unixcourse.tgz
On the command-line you can type (or just copy-paste – which can be done by just

selecting text with your mouse to copy it and paste it by pressing the middle mouse but-
ton on most modern GUIs on (GNU/)Linux) the following to get the archive containing
the folder:
wget https://ct.cs.univie.ac.at/teaching/unixlinux-einfuehrungskurs/unixcourse.tgz
tar -xvzf unixcourse.tgz

3.1 Shells, Terminals, and Commands
In the last chapter you’ve seen the concept of the kernel, the part of the OS which talks
to the hardware. If you want to communicate with the kernel you need something, that
wraps around it – a shell, for example.
Essentially, a shell is a user interface which allows you to access the services provided

by the OS. You are most likely familiar with a graphical user interface (GUI) which
allows you to access some services of the OS using a mouse and icons. A shell, on the
other hand, requires text as input by providing you with a command line. While the GUI
is often part of the OS you buy, i.e. you can’t easily change the program that is your
GUI if you use Microsoft Windows or Apple’s OS X, a shell on a (GNU/)Linux system
is just a program and you can choose from a wide variety of options. The shell we are
going to work with here is the GNU bash (Bourne Again SHell), which is based on an
older shell written by Stephen Bourne in 1979 and is obviously also a wordplay on the
verb ‘born’. We chose this one because it is currently the standard shell on all major
(GNU/)Linux distros, but do play around with others if you like to.
The stuff you enter on the command-line to your shell are commands and they work

the same way as clicking an icon with your mouse does, e.g. you can either double-
click on the Firefox icon, or just type the word “firefox” on the command line, followed
by ENTER. Both actions will start a new instance of the Firefox webbrowser (if it is in-
stalled). One thing to keep in mind in the following sections is that most commands
are actually stand-alone programs, even though they write their output to the terminal
screen, while only a few of them are so-called shell builtins, i.e. keywords the shell itself
understands and works on without starting a new program. This will be of special im-
portance in 5 where we talk about utilities that provide documentation for commands.

16

https://ct.cs.univie.ac.at/teaching/unixlinux-einfuehrungskurs/unixcourse.tgz
https://www.gnu.org/software/bash/

Many commands can take arguments and options. Their basic syntax is usually:
command [OPTION]... [ARGUMENT]...

The brackets around OPTION and ARGUMENT indicate that they are optional and the dots
tell you that the preceding entity can be used multiple times, i.e. the line reads approxi-
mately as “Use command by typing command, possibly followed by one or more option(s),
possibly followed by one or more argument(s).” Arguments tell the command e.g. on
which file to operate, whereas options tell it what to do with the arguments. To sepa-
rate these things, you have to put a space after the command, after each argument, and
after each (group) of options.
Options come in two flavors: Short and long ones. Short options are usually indicated

by a single, non-separated, preceding dash ‘-’, while long options can be recognized by
two non-separated preceding dashes ‘--’. A very simple example would be
$ firefox --new-window https://www.univie.ac.at

which, little surprisingly opens the homepage of the University of Vienna in a new
window of the Firefox webbrowser.
In most cases options for a single dash consist of a single letter, while options pre-

ceeded by two dashes are words or phrases, e.g. let’s say you use the ls program (to
list directories and/or files) which has the options -l, -a, and --human-readable and
want it to process argument arg. To do so, you could type:
$ ls -a -l --human-readable unixcourse
total 524K
drwxr-xr-x 9 me me 4.0K Sep 24 22:43 .
drwxr-xr-x 4 me me 4.0K Sep 24 22:45 ..
drwxr-xr-x 13 me me 4.0K Sep 19 10:05 contentdir
drwxr-xr-x 2 me me 4.0K Sep 18 15:36 dir1
drwxr-xr-x 2 me me 4.0K Sep 17 13:52 dir2
drwxr-xr-x 2 me me 4.0K Sep 17 13:52 dir3
drwxr-xr-x 2 me me 4.0K Sep 17 15:36 'dir with spaces'
-rw-r--r-- 1 me me 63 Sep 19 11:07 errorfile
-rw-r--r-- 1 me me 29 Sep 18 15:24 file1
-rw-r--r-- 1 me me 15 Sep 23 12:32 file10
-rw-r--r-- 1 me me 11 Sep 23 12:22 file3
-rw-r--r-- 1 me me 0 Sep 24 22:43 filetodelete
-rw-r--r-- 1 me me 472 Sep 23 09:49 grepfile
-rw-r--r-- 1 me me 0 Sep 23 12:33 hasfileinit
-rw-r--r-- 1 me me 422K Sep 18 17:52 hugefile
-rw-r--r-- 1 me me 46 Sep 23 12:11 join1
-rw-r--r-- 1 me me 48 Sep 23 12:11 join2
-rw-r--r-- 1 me me 405 Sep 23 12:22 linefile
-rw-r--r-- 1 me me 1.4K Sep 23 12:29 lsfile
-rw-r--r-- 1 me me 26 Sep 23 12:22 numericsort

17

-rw-r--r-- 1 me me 25 Sep 17 13:53 onelinefile
-rw-r--r-- 1 me me 69 Sep 18 15:36 renamedfile
drwxr-xr-x 2 me me 4.0K Sep 18 11:14 rmdirectory
drwxr-xr-x 2 me me 4.0K Sep 18 15:18 rminteractive
-rw-r--r-- 1 me me 331 Sep 23 11:02 sedfile
-rw-r--r-- 1 me me 331 Sep 23 10:48 sedfile.bak
-rw-r--r-- 1 me me 18 Sep 23 12:22 sortfile
-rw-r--r-- 1 me me 747 Sep 23 11:25 tablefile

One thing to remember is that it is possible to combine short options behind a single
dash, i.e. the following would be equivalent to the above:
$ ls -al --human-readable unixcourse
total 524K
drwxr-xr-x 9 me me 4.0K Sep 24 22:43 .
drwxr-xr-x 4 me me 4.0K Sep 24 22:45 ..
drwxr-xr-x 13 me me 4.0K Sep 19 10:05 contentdir
drwxr-xr-x 2 me me 4.0K Sep 18 15:36 dir1
drwxr-xr-x 2 me me 4.0K Sep 17 13:52 dir2
drwxr-xr-x 2 me me 4.0K Sep 17 13:52 dir3
drwxr-xr-x 2 me me 4.0K Sep 17 15:36 'dir with spaces'
-rw-r--r-- 1 me me 63 Sep 19 11:07 errorfile
-rw-r--r-- 1 me me 29 Sep 18 15:24 file1
-rw-r--r-- 1 me me 15 Sep 23 12:32 file10
-rw-r--r-- 1 me me 11 Sep 23 12:22 file3
-rw-r--r-- 1 me me 0 Sep 24 22:43 filetodelete
-rw-r--r-- 1 me me 472 Sep 23 09:49 grepfile
-rw-r--r-- 1 me me 0 Sep 23 12:33 hasfileinit
-rw-r--r-- 1 me me 422K Sep 18 17:52 hugefile
-rw-r--r-- 1 me me 46 Sep 23 12:11 join1
-rw-r--r-- 1 me me 48 Sep 23 12:11 join2
-rw-r--r-- 1 me me 405 Sep 23 12:22 linefile
-rw-r--r-- 1 me me 1.4K Sep 23 12:29 lsfile
-rw-r--r-- 1 me me 26 Sep 23 12:22 numericsort
-rw-r--r-- 1 me me 25 Sep 17 13:53 onelinefile
-rw-r--r-- 1 me me 69 Sep 18 15:36 renamedfile
drwxr-xr-x 2 me me 4.0K Sep 18 11:14 rmdirectory
drwxr-xr-x 2 me me 4.0K Sep 18 15:18 rminteractive
-rw-r--r-- 1 me me 331 Sep 23 11:02 sedfile
-rw-r--r-- 1 me me 331 Sep 23 10:48 sedfile.bak
-rw-r--r-- 1 me me 18 Sep 23 12:22 sortfile
-rw-r--r-- 1 me me 747 Sep 23 11:25 tablefile

Long options cannot be combined, so you have to type each of them in full. Many
programs have short and long options for the same operations and it’s just a question

18

of taste which one you use. A good approach is to start using long options because it is
easier to remember what they do and start memorizing the short options for operations
you use a lot.
But why bother to learn the names of programs if you can just click on an icon?

Surely, that’s much more intuitive and simple! Well, it depends. Imagine you com-
monly use about 50 programs, many of which interact with each other – a screen with
50 icons for programs seems rather overwhelming, don’t you think? And how about
moving stuff from one window to the other all the time – annoying, I’d say. Or opening
the same 7 programs one after the other, hundreds of times and copying data from one
to the other? Convenience is clearly not the word for this.
These are some of the tasks that can be solved easily on the command line. Most

command-line utilities follow the UNIX philosophy that each program should solve a
single problem and solve it well. By combining the capabilities of many programs you
get a very flexible toolset to solve your problem at hand. Make the easy things easy,
and the hard things possible!

Figure 3.1: A DEC VT100 terminal. CC BY-SA ClickRick

Finally, a terminal is actually a piece of hardware (see 3.1), which can take input and
display output. In this course and most likely in your whole life, you’ll be confronted
with terminal emulators, i.e. software which behaves like a terminal, like the one you
see in 3.2.
When you open a terminal emulator your shell will be started and will provide you

with a prompt, which usually looks a bit like
user@machine ~$

where user is your username, machine is the name of your computer and ~ is a short-
hand for your home directory (see below for an explanation).1 All your shell does now,
is to wait for you to issue a command – let’s do it the favor: type some random stuff
and press ENTER. It should look something like this:
$ ajsdggasd
bash: ajsdggasd: command not found
$
1From now on, we will abbreviate your prompt as just ‘$’.

19

https://en.wikipedia.org/wiki/User:ClickRick?rdfrom=commons:User:ClickRick

Figure 3.2: XFCE’s terminal emulator

Little surprisingly, this gibberish does not constitute a command. But fear not, we shall
use existing commands starting in the next section!

3.2 The Filesystem
In order to use the filesystem efficiently it is essential to understand its basic structure
and this is what this section wants to teach you.
The filesystem is software which manages how your files and directories are stored

on you disk/pendrive/CD/etc. Usually there are at least three kinds of entities in a
filesystem:
Files Some kind of data, possibly in a special format (e.g. PDF).
Directories These are places in which files are stored.
Links Links are references to either a file or a directory, i.e. they don’t contain data,

but just point to another place in the filesystem.
Filesystems in any UNIX system are usually structured as rooted trees.2 The root of the
filesystem is designated by the slash ‘ /’.

2For the mathematically interested: A rooted tree is an acyclic undirected graph in which one vertex has
been designated the root.

20

/

bin boot dev etc lib media mnt opt run usr

bin include lib local sbin share src

sbin srv tmp var

As you are logged in and opened a terminal already (if not, do so now), you can type
$ pwd
/home/me

Of course, you’ll get a slightly different output, but there are two important things here:
1. pwd is our first real command! It stands for ‘print working directory’ which prints

you current working directory, i.e. tells you where in the filesystem you are.
2. The output, /home/me tells you, that you are in a directory me which is in a direc-

tory called home, which is in the root directory /.
Okay, now that you know where you are, you may want to know which files3 are in
this directory – you can list them using
$ ls
Documents Downloads Pictures Private

Again your output will differ slightly. So now, you used the program ls to show you
the contents of the directory you are in. This is ls’ standard behavior: If you don’t
provide any arguments it will display the content of you current working directory.
However, you can tell ls which directory it should list by providing a path as an

argument. To show the contents of the root directory, type:
$ ls /
bin boot dev etc lib media mnt opt run sbin srv tmp usr var

The output provided here shows everything that is required in the root directory ac-
cording to the Filesystem Hierarchy Standard (FHS), a document which defines what
has to be in the root directory of any (GNU/)Linux distro.4 But as it only defines the
minimum, distros are free to add other things and you’ll most likely also find at least
home, proc, and sys in your root directory.
Now there is one more concept you have to understand regarding the filesystem:

absolute and relative paths. In a rooted tree you can specify any point in the tree by
starting at the root and listing every step on the way. This is what pwd does: Above it
said that I was in /home/me, telling me my exact position in the filesystem in an absolute
manner; therefore paths starting with the root directory are called absolute paths.
3Here ‘files’ denotes data, directories, and links as it is the most generic concept.
4A short version of this can be found by typing man 7 hier.

21

http://refspecs.linuxfoundation.org/fhs.shtml

Unfortunately, absolute paths can be very inconvenient and long. Remember that
we said ls can be provided with a path to list the contents of any directory in the
filesystem, not just the one you are currently in and that in the above example the
current directory contained Documents, Downloads, Pictures, and Private. Imagine
you have a subdirectory in Documents which is called university. To list it, you could
type
$ ls /home/me/Documents/university

An awful lot to type I’d say! To remedy this situation you can provide a path relative to
your current working directory, i.e. a relative path. pwd told us that our current working
directory is /home/me, so the relative path to university is just Documents/university
without a leading ‘/’. Every path starting with a slash will be interpreted as an absolute
path, while relative paths just start with the name of the next directory you hop into
from your current directory.
That’s it for filesystem theory, nowwe’ll enable you to help yourself on a (GNU/)Linux

system.

3.3 Help Utilities
Every (GNU/)Linux system comes with a lot of built-in documentation installed by
default and of course the Internet hosts millions of HOW-TOs, tutorials, etc. We’re
going to focus on the offline documentation, but also provide some hints were you
usually get reliable information online.
This section can be treated as a reference – reading it now in its entirety may cause

you a bit of a headache as you may not be familiar enough with commands, options
and arguments right now. For the beginning it will suffice if you skim through this
section to get a basic idea about which facilities exist.

3.3.1 man

man, which is a shorthand for “manual page” is the traditional UNIX documentation
and knowing how to use it will help you not only on (GNU/)Linux, but also on any
other UNIX you’ll encounter like the various BSDs. In case you ask someone who is in a
hurry about a program and the only response is “RTFM”, meaning “Read The Fucking5
Manual”, this program is usually what they want you to use.
If you want to access the manual page of the ls program, all you have to do is to

type:
$ man ls

After this the man page for ls should appear. To scroll down press SPACE and to exit
press Q.
We won’t go into a lot of details here because your first task now is to type

5Or “Fine”, for the very pure.

22

$ man man

This will fire up theman page of man. Read it to learn how to use this program efficiently
and make sure to read the “EXAMPLES” section!
The main things you should remember from this is how to move within the man

pages, how to exit them, what sections are and how you can tell the program to only
return entries from certain sections. Useful options you may want to remember are
-k | --apropos List the programs whose name or short description match the key-

word you searched for. Note that this is the same thing the apropos program
does.6

-a | --all Show all man pages from all sections whichmatch the keyword you searched
for.

If you read through man’s man page you’ll understand what these options do ;)

3.3.2 info

While man is available on any UNIX system, the info pages were invented by the GNU
project and are therefore not necessarily available. However, all widely used (GNU/)Linux
distros have them installed by default – at least in parts. Unfortunately, the Debian
project considers the license of the info files as nonfree and must thus be installed by
hand using:
$ sudo apt install texinfo-doc-nonfree

Don’t ask...
To get the info page of ls type

$ info ls

You can again use SPACE to scroll forward and Q to get out of info.
Your next task is now to read

$ info info

As info is a bit more sophisticated than man, offering links, footnotes, menus, and
other references it is essential to read this. Furthermore, info has a lot more keyboard
shortcuts you can use, all of which are documented in its info page.
The difference between man pages and info pages is not a clearcut one. As a rule of

thumb, man pages are often more concise and only useful if you already know what a
program does in general, but just want to check available options, i.e. they are often
very technical and offer few explanations.
The info pages, on the other hand, are often much more verbose, have sections for

different kinds of options (while the man pages just list them one after the other) and
at least try to be a bit more accessible to complete beginners.
6You guessed it: Use man apropos to find out more.

23

Just compare some man pages and info pages for the same program, e.g. man ls vs.
info ls to see the differences and get a feeling for them.
Note also, that all documentation is written by humans and some are more capable

of explaining how stuff works than others. For this reason the quality of man pages and
info pages can vary greatly from program to program. A good example can be found
in this xkcd comic.

3.3.3 --help and -h

Sometimes you are just not sure about what was the right option to get what you want
or you only forgot the correct spelling of the option. In these cases you may not want
to read through the whole man or info page and most programs make this possible by
providing a --help or -h option. So, typing COMMAND --help or COMMAND -h will in
most cases print a short description of the command and its most common options to
the screen.
Just try it out to see for yourself.

3.3.4 help and type

In 3.1 we mentioned that not every command you type is a full program, but some are
just shell builtins. These are keywords understood by your shell. You can compare this
with your GUI: Most icons you click on will start a new program, but some things are
done by the GUI itself, e.g. if you click on the Windows button, it will display a list of
programs you can start, but this list is just part of the GUI.
For these shell builtins no man pages or info pages exist. A command you’ll use very

often is cd (“change directory”) which enables you to change your current working
directory. But if you try to type
$ man cd
you’ll get a man page titled “BASH_BUILTINS(1)” which will most likely be very con-
fusing. To get help specifically for cd (or any other shell builtin for that matter) just
type
$ help cd
and the help will be displayed on the terminal.
But, you may ask yourself, how am I supposed to know what is a program and what

is a shell builtin?! Don’t despair! This is where the type shell builtin comes into play. If
you tried to access the man and/or info pages of a command and didn’t get a satisfying
result, try
$ type COMMAND_NAME
e.g.
$ type cd
cd is a shell builtin
And voilà, now you can be sure.

24

https://xkcd.com/1692/

3.3.5 which and whereis

Many programs are continously developed and change from one release to another;
functionality may be added, reduced, removed, deprecated, etc. And at some points
you may not know whether you want the old or the new version. One way to solve
this is to simply install both, use them and then decide which one you like more. On
a GUI this may be indicated by two different icons for the different versions, but how
can you tell the difference on the command-line?
This is where the which and whereis utilities come in handy.
which tells you where in the filesystem the executable you are going to call is located

and if you have installed two versions each of them will reside in a different place.
Thus, if you type
$ which pwd
/bin/pwd

which tells you that if you call the pwd program, it will use the one in the /bin directory.
So, in case you have a second version of pwd installed, which resides in /usr/local/bin,
you’ll have to use the absolute path to call it.
But sometimes you won’t know if there are different versions of the same program on

your machine, e.g. when you start working in a new place with your machine already
set up for you. To find out your possibilities try
$ whereis COMMAND

which will show you where versions of COMMAND are installed, where their man pages
are located and if the source code of the command is stored in a standard location on
the system.
Attention: The following explanation will most likely make no sense at all if you

haven’t read about variables in 4.7. The actual difference between which and whereis
is that the former looks through your PATH variable and returns the first executable it
finds which actually is the one your shell would execute while the latter scans through
your whole PATH as well as MANPATH plus some standard locations commonly used for
programs on any (GNU/)Linux system, and returns everything it finds there, separated
into executables, source files, and man pages.

3.3.6 whatis

The whatis command tells you what a command does on the most basic level, e.g.
$ whatis ls
ls (1) - list directory contents

As you know by now, each man page has a one-line description at its start. It is exactly
this one line which whatis will print.

25

3.3.7 The Internet Is Your Friend

If you have to do something real quick you may find yourself in a situation where
you don’t want to deal with man pages or info pages, but would prefer a ready-made
command with all options you want already set. As it is very likely that other persons
have had the problem at hand before you and many people post everything they achieve
online, chances are that you can find the command of your dreams posted in some
online forum, ready to be copy-pasted into your terminal emulator.
As you might expect, there are a myriad different sources where you can find infor-

mation, but we will only deal with very few of them which offer reliable information
in most cases.

Distros’ Websites

Each distro has its website and often Wikis attached to them. Many have a lot of useful
information, but keep in mind that these may be distro-specific. It is also important
to know how your distro is organized; in the case of Debian, you are faced with a
community project where the whole content is provided by people spending their spare
time on providing information to others, but no one is responsible for doing so. This
often leads to very helpful replies to questions, targeted at total beginners, but as no one
is responsible for updating this content, sometimes you find very outdated information.
Red Hat Enterprise Linux, on the other hand, is a distro aimed at corporations, providing
a lot of information. However, as their material is intended for IT-professionals, you
won’t find a lot of explanation in many cases as they assume you already know what
you are doing/want to do and just show you how you can do it with the tools Red Hat
provides.
Thus, do a bit of research about each distro before using their documentation and

how-tos.
Debian: Information about Debian can be found at:

• https://www.debian.org
• https://wiki.debian.org/
• https://debian-handbook.info/. This is the Debian Administrator’s Hand-
book, the e-book version of which can be downloaded freely. However, you
can also pay for the e-book version, and in case you start relying on it, it
is definitely a good idea to give the authors something back for their hard
work. The current (2019-08-22) version of the book if for Debien 8 Jessie,
but the current Debian release is Debian 10 Buster, so some information my
be outdated.

Ubuntu: Ubuntu is an enterprise distribution with a desktop and a server version. They
have a very active community as well which answers a lot of questions in the
forums.

• https://www.ubuntu.com

26

https://www.debian.org
https://wiki.debian.org/
https://debian-handbook.info/
https://www.ubuntu.com

• https://tutorials.ubuntu.com/. You can filter tutorials for different cate-
gories, e.g. server or desktop.

• https://help.ubuntu.com/
• https://ubuntuforums.org/
• https://askubuntu.com/ This is a searchable question and answer site.

Red Hat Enterprise Linux: As mentioned above, RHEL is an enterprise distribution
and one of the most prominent examples showing how much money you can
earn with free software. They have excellent, though rather technical guides for
many topics, and some things can be only accessed if you have a support contract
with Red Hat.

• https://www.redhat.com/ Their main page is very much like the website of
other companies – a lot of bragging and ads, but it’s still a good starting point
to get a feeling about what Red Hat as a company is doing.

• https://access.redhat.com/ This is where you start out if you look for help.
Browse a bit; they have a lot of documentation, guides, etc. and many things
can be downloaded as PDF for free.

CentOS: CentOS, the “Community Enterprise OS” is the community version of RHEL.
It is only rarely suited for home Desktop use and the software it ships is very out-
dated in many cases (as all the good stuff is reserved for “actual” RHEL). However,
if you want to get to know RHEL without paying for a license, CentOS is a good
start and may be useful if you want to run small servers at home/in the cloud.

• https://centos.org/
• https://wiki.centos.org/. While this Wiki is still alive, it is updated rather
sparsely and the current release CentOS 7 is not documented in any reason-
able fashion. So much so, that https://wiki.centos.org/docs/ just tells you
to visit the above mentioned https://access.redhat.com/.

Arch Linux: While Arch Linux is considered to be rather complicated and suited only
for experienced users, it has a thriving community and a very well maintained
Wiki with in-depth explanations for a lot of things. Highly recommended if you
want to know something in detail.

• https://wiki.archlinux.org/

We’ll stop here, but you can comb through all the other distros’ websites as well, which
is a very useful thing to do before you change distro.
If you are interested how many distros are out there and which ones are the most

heavily used, you may find https://distrowatch.com/ (lists also non-Linux UNIX sys-
tems like the various BSDs) or https://static.lwn.net/Distributions/ useful.

27

https://tutorials.ubuntu.com/
https://help.ubuntu.com/
https://ubuntuforums.org/
https://askubuntu.com/
https://www.redhat.com/
https://access.redhat.com/
https://centos.org/
https://wiki.centos.org/
https://wiki.centos.org/docs/
https://access.redhat.com/
https://wiki.archlinux.org/
https://distrowatch.com/
https://static.lwn.net/Distributions/

Other Online Sources

However, there are also sites dedicated to Q&A, i.e. you can post a question and some-
one in the community replies with a hopefully correct answer. The ones you’ll en-
counter over and over again are:
Stack Overflow: To be found at https://stackoverflow.com/. If you did some program-

ming already or are going to do so, this site will also pop up many times. When-
ever you research some problem you have with the command-line it is almost
certain that you are going to land on Stack Overflow after some time, regardless
which search engine you use.

Stack Exchange for UNIX/Linux: Strictly speaking this is just a subsite of Stack Over-
flow and many topics specifical to (GNU/)Linux and/or UNIX in general will can
be found here: https://unix.stackexchange.com/.

With these tools at your disposal you should be able to solve almost any problem your
new shiny (GNU/)Linux system throws at you. BUT, beware! Not everything people
post there is correct and if you are unlucky, someone may even put some malicious code
in their reply, so always think before you copy-paste something onto your command-
line and press ENTER, especially if you have no idea what the command you want to
use can do. Be even more careful if the line you copy starts with sudo. The good thing
about UNIX systems is that you can do anything you like, but the bad thing is that you
can do anything you type.

28

https://stackoverflow.com/
https://unix.stackexchange.com/

4 The Command-Line
Now, after so much theory, let’s do something practical! The first thing to do is to start
a terminal emulator if you haven’t already done so.
Before we are going to start working with commands, we’ll talk a bit about keyboard-

shortcuts with which you can move quickly on a line. For this purpose just type a
sentence on the command-line without pressing ENTER:
$ this is a beautiful test sentence

Your cursor will now be at the end of the line. If you made a typo somewhere in the
line you can move there using the arrow keys, but this gets annoying pretty quickly as
soon as the line gets long (your mouse won’t work here). Thus, play around with the
following shortcuts:1

CTRL-A Move to the beginning of the line.
CTRL-E Move to the end of the line.
CTRL-K Delete everything from your cursor to the end of the line.
CTRL-U Delete everything from your cursor to the beginning of the line.
CTRL-T Switch the sign currently below the cursor with the one before it and

move the cursor one character to the right.
ALT-F Move one word forward.
ALT-B Move one word backwards.
ALT-T Switch the word below the cursor with the one preceding it.

There are even more shortcuts, so look them up on your own if you’re curious, but the
ones above will suffice for the beginning. In case you don’t see the use in some of them:
That’s ok, use cases will come ;)
And there is one more vital thing to know about moving aroung on the command-line:

tab-completion. If you want to pass an argument to a program and you’ve already typed
enough that the argument is uniquely identified, you can just hit TAB and the bash will
automatically complete the argument. Why this is extremely useful will become clear
once you start using commands and arguments, just keep this in mind. Additionally, if
you press TAB twice, the bash will list all currently possible arguments. Try it out when
following the instruction below!

1Some of themmay not work, because the terminal-emulator you use interprets these shortcuts differently
(e.g. by opening up some menus). Usually this can be changed in the settings of the terminal-emulator.

29

4.1 Moving and Looking Around
Now, onwards to the command-line! For starters, let’s find out where we currently are
– you already know how to do this:
$ pwd
/home/me

Now, let’s see what’s in the directory we’re currently in, which we can do with ls(1),
which “lists” directory entries:
$ ls
bin documents nikola playground unixcourse
Desktop Downloads personal tor-browser_en-US

As you already know, you can pass options to ls. We’ll start with the -a | --all
option. This one shows you all files in the current directory:
$ ls -a
. Downloads .pki
.. .dvdcss playground
.android .F5Networks .python_history
.ardentryst .gconf .ssh
.bash_history .gnupg tor-browser_en-US
.bash_logout .gnuplot_history .vim
.bash_profile .gphoto .viminfo
.bashrc .ICEauthority .vimrc
bin .lesshst .wget-hsts
.cache .local .Xauthority
.config .mozilla .xsession
Desktop .neomutt .xsession-errors
.dmrc .xsession-errors.old

What?! Where did all these files come from?! Don’t worry, they have been here all
the time, but they are hidden files. You see that those files which have not been listed
before, start with a dot ‘.’ and this indicate that they are ‘hidden’. This does not mean
that you are not allowed to see them, but they are mostly configuration files which you
just don’t want to see every time you use ls as they just add a lot of useless output.
For example, your browser will store your bookmarks, preferences, cookies, browsing
history, etc. in a hidden directory. This way it does not confuse your profile with the
one of another user who uses the same computer. Thus, a hidden file is just a file whose
name starts with a dot, and programs like ls don’t display them by default – nothing
more to it. You can also create hidden files yourself if you start their name with a dot!
However, two hidden files are found in every directory: ‘.’ and ‘..’. ‘.’ is a pointer

to the directory itself2 and ‘..’ is a pointer to the directory above this directory. This
2Why this is useful will become clear later.

30

is a very convenient shortcut if you want to change to the directory above the one
you are currently in, but you don’t want to type the absolute path from the root direc-
tory. Changing directories? Great, we’re already at the next command: cd which very
surprisingly stands for ‘change directory’. It takes as an argument a path (relative or
absolute) and changes your current working directory:
$ cd Documents
$ pwd
/home/me/Documents
$ cd ..
$ pwd
/home/me

You can see here that we changed into the Documents directory and from there one
directory ”upwards” by using .. as shortcut. Otherwise we would have had to type cd
/home/me to change from /home/me/Documents to the /home/me.
Two more things regarding cd:
• As we’ve seen in 3.3.4, it is a shell-builtin, so if you want to know how it works,
you have to type “help cd”.

• If you just type cd on the command-line and press ENTER without providing an
argument, cd will change to your home directory. The home directory is where
all your personal stuff is stored and in the examples above, my home directory is
/home/me. Thus, if you get lost in the filesystem or you are in a hurry and just
want to go back to your home directory, type cd, press ENTER and you’ll be right
there.

Now that you’ve seen cd, let’s go back to ls. Combining ls, pwd, and cd the filesystem
is yours to explore and we’ll let you do that in a minute, just one more option to ls and
the associated concepts:
With the -l option ls provides you with “long listing”:

$ ls -l
total 36
drwxr-xr-x 2 me me 4096 Aug 27 14:53 bin
drwxr-xr-x 2 me me 4096 Sep 4 17:49 Desktop
drwxr-xr-x 14 me me 4096 Sep 7 17:40 documents
drwxr-xr-x 2 me me 4096 Sep 10 21:43 Downloads
drwxr-xr-x 8 me me 4096 Aug 24 20:05 nikola
drwxr-xr-x 4 me me 4096 Aug 27 14:54 personal
drwxr-xr-x 3 me me 4096 Aug 26 20:43 playground
drwx------ 3 me me 4096 Sep 9 14:36 tor-browser_en-US
drwxr-xr-x 2 me me 4096 Sep 17 11:48 unixcourse

As you can see there is a lot more information about each file. Actually, the output is
now separated into fields, separated by a space. These fields are from left to right:

31

Permissions: See below, that’s the new concept we’re going to explain ;)
Hard Links: The number of hard links which point to this file. If you are interested in

links, read it up, we won’t cover them here as you don’t need them for now.
Owner: The user to whom this file belongs.
Group: The group to which this file belongs.
Size: The size of the file in bytes.
Modification Time: The month, day and time give you the exact time when the file

was last modified. If it was not modified in the current year, the year of the last
modification is given as well.

Name: The name of the file.
Each file has an user owner which is usually the user who created the file in the first
place as well as a group owner, which is usually one of the groups the user owner
belongs to.3 But what does that mean?
Well, it has to do with the first field which consists of a rather bewildering number

of letters and dashes at first sight. However, it is actually a very simple system and tells
you what you can do with a file:
The first character tells you what kind of file this is, e.g. ‘d’ indicates a directory and

‘-’ indicates a regular file. There are others as well, but these are the most common
and important ones – if you want to know more look at the info page of ls(1).
The next nine characters show the permissions of the file, i.e. who is allowed to

do what with a file. These nine characters are actually 3 groups of 3 permission sets:
The first three are the permissions of the owner4, the second three are the permissions
for the group, and the third permission set tells you what anybody else (often called
“world” or “other”) is allowed to do.
The reading of permissions is pretty easy: If there is a letter, the permission is present,

if there is a dash it is absent. The postitions in each permission group from left to right
tell you about:
r “Read permission”: If this permission is set, it is allowed to read the file.
w “Write permission”: If this permission is set, it is allowed to write something to the

file, i.e. change it.
x “Execute permission”: If this permission is set, it is allowd to execute this file – this

is typically set for all programs, like ls(1).
With this information at hand, can you decode this output:
3From now on we will just speak of “owner” to mean “user owner” and of “group” to mean “group
owner”.

4Yes, even owners are not necessarily allowed to do everything with the file!

32

-rwxr-x--x 1 nina hackers 2048 Jan 14 14:21 amazing-script

Try it, write down your solution and afterwards read the following explanation.
This is a regular file, which can be executed by the owner, the group, and everyone

else, can be read by the owner and the group and written only by the owner. It belongs
to user nina and to the group hackers. It is 2048 bytes in size (i.e. 2 KB), was last
modified on January 14th at 14:21, and is called “amazing-script”.
As you’ve seen in 3.2, you can also pass absolute and relative paths as arguments to

ls to tell it what to list. There is one thing you should be aware in this case: If the
argument is a regular file, ls will list just the file, but if the argument is a directory, ls
will show you the content of the directory:
$ cd unixcourse
$ ls file1
file1
$ ls contentdir
file_00 file_05 file_10 file_15 subdir04 subdir09
file_01 file_06 file_11 subdir00 subdir05 subdir10
file_02 file_07 file_12 subdir01 subdir06
file_03 file_08 file_13 subdir02 subdir07
file_04 file_09 file_14 subdir03 subdir08

Great, now you are ready for your tour through the filesystem! Use ls, cd, and pwd
to look around – you are on a free software OS, there are no secrets (except if you
don’t have permission to look at something, of course ;)). Check the overview of the
filesystem in 3.2 again to find potentially interesting places to look at.

4.2 Working with Files
Up to this point we’ve just looked at files, examined their properties and moved around
in the filesystem tree. This is all nice and fine, but maybe we want to change files’
properties, or add stuff to or remove something from the filesystem. This is what this
section is about. And for now, cd5 into the unixcourse directory you’ve downloaded
at the beginning of 3 to be able to follow all the examples below.
One of the things you may have already wondered about is: What if you want to

have a directory for all of your lovely cat GIFs – how can you create such a directory?
Well, the answer to this is mkdir(1) “make directory”. In its simplest form it just takes
a single argument: The name of the directory you want to create. Note, that this can
be a relative or absolute path:
$ ls
contentdir grepfile rmdirectory
dir1 hasfileinit rminteractive

5Yes, you can use command’s names as verbs.

33

dir2 hugefile sedfile
dir3 join1 sedfile.bak

'dir with spaces' join2 sortfile
file1 linefile tablefile
file3 numericsort
filetodelete onelinefile

$ mkdir newdir
$ ls
contentdir grepfile onelinefile
dir1 hasfileinit rmdirectory
dir2 hugefile rminteractive
dir3 join1 sedfile

'dir with spaces' join2 sedfile.bak
file1 linefile sortfile
file3 newdir tablefile
filetodelete numericsort

$ cd newdir
$ pwd
/home/me/unixcourse/newdir

One thing about names: Whether you create directories as we do now, or other files
which we’ll do later, there are certain rules you should adhere to, to make your life
easier: A file name (which includes directory names!) should consist of only letters
of the English alphabet, underscores ‘_’, dashes ‘-’, and digits, and should always start
with an underscore or a letter. Don’t use special characters like ä, ß, ж, €, etc. and don’t
use spaces, tabs, newlines, etc.! This is just conventional, so you can use whatever you
want, but it may make your life very inconvenient. In case you encounter filenames
containing spaces, you will have to quote the name or escape the spaces using ‘\’. If
you use ls(1) in the course directory you’ll see that there is a directory called “dir
with spaces”. To change into it, you have three options:
$ pwd
/home/me/unixcourse
$ cd "dir with spaces"
$ pwd
/home/me/unixcourse/dir with spaces
$ cd ..
$ pwd
/home/me/unixcourse
$ cd 'dir with spaces'
$ pwd
/home/me/unixcourse/dir with spaces
$ cd ..
$ pwd
/home/me/unixcourse

34

$ cd dir\ with\ spaces
$ pwd
/home/me/unixcourse/dir with spaces

So you see, you can use either single or double quotes6, or just escape each space with
a prepended backslash. Again, we recommend that you don’t do this because it may
break some programs and scripts. Don’t get us wrong – we don’t think that it’s great
that you have to stick with these conventions, but as most people do, it will make it
harder for you to use others’ solutions to problems you encounter.
After this little detour about naming, let’s return to creating directories. Per default

mkdir assumes that the whole path of the directory you want to create exists, except
for the last part of the path, i.e. the part behind the last ‘/’. If you try to create a whole
directory hierarchy, this will fail:
$ ls dir1
$ mkdir dir1/subdir/subsubdir
mkdir: cannot create directory ‘dir1/subdir/subsubdir’: No such file or directory

The first command creates no output because there is nothing in dir1 and when we
try to create a subdirectory subdir with a sub-subdirectory subsubdir we get an error
message (not a very helpful one in this case, but we know what the problem is anyway).
But surely, there must be a way to create such hierarchies, right? Of course! You just
have to pass the -p | --parents option to mkdir:
$ mkdir -p dir1/subdir/subsubdir
$ ls dir1
subdir
$ ls dir1/subdir
subsubdir

Voilà, this time the whole path was created.
Nothing persists forever, so from creation we move directly to destruction: Whenever

you want to delete a directory, you can use rmdir(1) “remove directory”. Like mkdir
it takes one (or more) directories as arguments and deletes them. Ok, let’s go!
$ rmdir dir1/subdir
rmdir: failed to remove 'dir1/subdir/': Directory not empty

Hm, that didn’t work out as expected. But this is a good thing in this case. rmdir only
removes directories if they are empty, i.e. there are no files (except ‘.’ and ‘..’) in it.
Why is this such a good thing? Well, now we’re getting at something you should really
remember: On the command-line there is no undo! If you delete something, it is gone
for good and only people with a lot of training and expertise are able to recover files

6They are not the same in other contexts which we’ll encounter later.

35

or directories you deleted.7 Therefore, rmdir prevents you from mistakingly removing
a lot of your files with a single line.
However, if you have a situation like ours, where we have dir1 which contains only

subdir which only contains subsubdir which contains nothing and you want to delete
subdir and subsubdir rmdir offers the same option as mkdir does, to delete such a
chain of empty directories, i.e. -p | --parents:
$ rmdir -p dir1/subdir/subsubdir

This deletes all three directories in the given path. Now, recreate the dir1 directory
and move on.
As you might have guessed, rmdir removes only directories – just try it out with the

following file, conveniently placed in your course directory:
$ rmdir filetodelete
rmdir: failed to remove 'filetodelete': Not a directory

Now that wasn’t surprising at all. But how can we remove files? The answer to this is
rm(1) “remove”. Thus:
$ ls
contentdir grepfile onelinefile
dir1 hasfileinit rmdirectory
dir2 hugefile rminteractive
dir3 join1 sedfile

'dir with spaces' join2 sedfile.bak
file1 linefile sortfile
file3 newdir tablefile
filetodelete numericsort

$ rm filetodelete
contentdir hasfileinit rmdirectory
dir1 hugefile rminteractive
dir2 join1 sedfile
dir3 join2 sedfile.bak

'dir with spaces' linefile sortfile
file1 newdir tablefile
file3 numericsort
grepfile onelinefile

This time, the file is gone. And remember what we said earlier about removing stuff?
It’s gone. Totally. Absolutely. No rebirth (without a lot of money). If you’d try to
remove a directory with rm, this won’t work out of the box:
$ rm dir1
rm: cannot remove 'dir1': Is a directory
7Their training is usually directly reflected in the rather huge amount of money you have to pay them to
get your data back.

36

No surprises here. However, rm has some options we’re going to talk about:
-r | -R | --recursive With this option, rm removes files and directories recursively,

i.e. if you pass a directory as an argument with this option rm will remove this
directory and everything within it. Again, no undo. NO UNDO! Sorry, just sayin’.
For the sake of an example:

$ ls rmdirectory
file_01 file_03 file_05 file_07 file_09
file_02 file_04 file_06 file_08 file_10
$ rm -r rmdirectory
$ ls rmdirectory
ls: cannot access 'rmdirectory/': No such file or directory

Yes, the directory and all ten files it contained are gone now.
-i If you use this option, rm will ask you to confirm the deletion of each file, which

can save your one file you forgot was in that directory, but really need.8 Thus:

$ ls rminteractive
file_01 file_03 file_05 file_07 file_09
file_02 file_04 file_06 file_08 file_10
$ rm -ri rminteractive
rm: descend into directory 'rminteractive/'? y
rm: remove regular file 'rminteractive/file_01'? y
rm: remove regular file 'rminteractive/file_05'? y
rm: remove regular file 'rminteractive/file_04'? n
rm: remove regular file 'rminteractive/file_09'? y
rm: remove regular file 'rminteractive/file_07'? y
rm: remove regular file 'rminteractive/file_10'? y
rm: remove regular file 'rminteractive/file_02'? n
rm: remove regular file 'rminteractive/file_03'? y
rm: remove regular file 'rminteractive/file_06'? n
rm: remove regular file 'rminteractive/file_08'? y
rm: remove directory 'rminteractive/'? n
$ ls rminteractive
file_02 file_04 file_06

For each question rm asks you have to type ‘y’ for “yes” or ‘n’ for “no”.
-f | --force Force rm to do what you told it remove everything without questions.9

While -r | -R | --recursivewas dangerous, this one is where the real bad stuff
8Ever realized that “file” is just an anagram of “life”?
9In some cases rm asks you if you really want to delete a file even without the -i option present. See

man 1 rm.

37

begins. Don’t use it if you are not absolutely, 100%, utterly, totally, completely
convinced that you knowwhat you are doing. “Oh, come on”, youmay think, “I’m
not that stupid, I know this by now. What can possibly go wrong?”. Well, have
a look at this, where someone accidentally wiped all data of a whole company
(including the backup) with one single rm -rf. The author of these lines once
removed all invoices of a company he worked for, but fortunately there was no
-r option present, so it were just the invoices of the current year. There was no
backup. I had to retype them by hand from printed versions – great fun, 10 out
of 10, would recommend...

So, what else can you do with files? What about copying stuff from one place to some-
where else? This can be done with the cp(1) command. Its basic syntax is:
cp [OPTION]... SOURCE DESTINATION

i.e. after maybe passing one or more options to cd you first tell it what you want to
copy and then you tell it where to copy it. Source and destination can be relative or
absolute paths. As a very simple example, you can do:
$ ls
contentdir grepfile numericsort
dir1 hasfileinit onelinefile
dir2 hugefile rminteractive
dir3 join1 sedfile

'dir with spaces' join2 sedfile.bak
file1 linefile sortfile
file3 newdir tablefile

$ cp file1 file2
$ ls
contentdir grepfile onelinefile
dir1 hasfileinit rminteractive
dir2 hugefile sedfile
dir3 join1 sedfile.bak

'dir with spaces' join2 sortfile
file1 linefile tablefile
file2 newdir
file3 numericsort

However, there are some things about this simple scheme you have to take into account:
• If you want to copy a directory and all its content you have to use the -r | -R |
--recursive option, like with rm when you wanted to delete a directory with its
contents.

• If the destination is a directory, cp will copy the source into the destination di-
rectory, e.g.:

38

https://www.independent.co.uk/life-style/gadgets-and-tech/news/man-accidentally-deletes-his-entire-company-with-one-line-of-bad-code-a6984256.html

$ ls dir1
$ cp file1 dir1
$ ls dir1
file1

• If the destination is a directory, you can give multiple sources, i.e. you can copy
multiple files at once into a directory by listing them all on the command-line and
providing the directory you want to copy them into as the last argument:

$ cp file1 file2 file3 dir1
$ ls dir1
file1 file2 file3

• But, wait, we already copied file1 to dir1, so which version is now in dir1? As
you may have guessed from the behaviour of rm and rmdir: The command-line is
unforgiving. If there is already a file with the same name in a directory, this file
is overwritten and cp won’t tell you about it – it assumes that you know what you
are doing. Fortunately, just like rm there is a -i | --interactive option which
asks you every time a file would be overwritten. In addition to that, cp also
offers the -n | --no-clobber option which tells the program to never overwrite
existing files.

The last but one thing we’re going to cover for working with files is ow to rename and
move them around. This is done by the same utility, mv(1) “move”. Its standard syntax
is:
mv [OPTION]... SOURCE DESTINATION

Not only is its syntax the same as the one for cp, the same caveats about how to move
multiple files and moving directories apply as well, with one exception: There is no -r
| -R | --recursive or a similar option for mv – it always moves a whole directory if
you pass one as source. If you just want to rename a file without moving it into another
place in the filesystem, you just put the destination in the same directory:
$ ls
contentdir file3 numericsort
dir1 grepfile onelinefile
dir2 hasfileinit rminteractive
dir3 hugefile sedfile

'dir with spaces' join1 sedfile.bak
file1 join2 sortfile
file2 linefile tablefile

$ mv file3 renamedfile
$ ls
contentdir grepfile onelinefile

39

dir1 hasfileinit renamedfile
dir2 hugefile rminteractive
dir3 join1 sedfile

'dir with spaces' join2 sedfile.bak
file1 linefile sortfile
file2 numericsort tablefile

We’ll end this section with something a bit more abstract again. In 4.1 we introduced
you to the concept of permissions when you encountered the output of ls -l. Permis-
sions were originally used in UNIX when many users sitting in front of terminals (the
hardware devices you saw in 3.1) connected to central computers where all of them
worked at the same time. To enable them to collaborate more easily they could set the
permissions for group and others as they wanted to. This was done by the chmod(1)
“change (file) mode”. chmod’s basic syntax is:
chmod [OPTION]... MODE[,MODE]... FILE...

There are two ways to pass a set of permissions to chmod: By a symbolic representation
and by an octal number. The general format of the symbolic mode is:
[ugoa...][[-+=][perms...]...]

The first part indicates for whom you want to change the permissions: u for “user”, i.e.
the user who owns the file, g for “group”, o for “others” and a for “all”. The default is
a, i.e. to change the permissions for everyone, but if you write u you change only the
user’s permissions and if you write ug you change the permissions of the user and the
group. As you may have noticed ugo and a are equivalent.
The second part means what you want to do: + to add the following permissions, - to

remove the following permissions and = to set the permissions to exactly the following
permissions.
The third field consists of the permissions you want to add/remove/set, i.e. the letters

r, w, and x.10
Consider this example:

$ ls -l file1
-rw-r--r-- 1 me me 29 Sep 18 15:24 file1
$ chmod g+w file1
$ ls -l file1
-rw-rw-r-- 1 me me 29 Sep 18 15:24 file1

As you can see, we gave the group (g) additional (+) write permission (w), but left the
other permissions intact.
Now it’s your turn: Try to remove all rights from the group and the others. Is there

more than one way to do this?
10If you look at the manpage of chmod you’ll see that there are three more possible values, but for now,

we’ll ignore them.

40

We’re not going to explain the octal mode here: It’s not hard, but it can be confusing
at the beginning and can take a bit more time to grasp – read the manpage if you are
interested :)
While chmod changes the permissions on a file, there are also two utilities you can

use to change the user owner and group owner of a file: chown(1) “change owner” to
change the user owner and chgrp(1) “change group” to change the group owner. Their
syntax is rather similar:
chown [OPTION]... [OWNER][:[GROUP]] FILE...
chgrp [OPTION]... GROUP FILE...

As you can see, chown can actually be used to change user and group. In many cases
where you use one of them you actually want to change all ownerships within a whole
subtree of the filesystem. Thus, both of them offer a -R | --recursive to do so recur-
sively. Note that this is an uppercase ‘R’!
This can be useful e.g. if someone copies a file from their home directory into yours,

but the owner information is copied as well, so you have to change it before you can
use it.

4.3 Working with Content
At this point you know how to move around and how to change files, but you haven’t
learned how to work with the stuff that is in files, i.e. content. Many files on your
system contain human readable11 text which you can easily manipulate.

4.3.1 Looking at Content

But before we start writing stuff somewhere, we’ll look at it first. The easiest way to
see the contents of a file is to use the cat(1) command. This is an abbreviation for
“concatenate”, i.e. combining stuff. Its basic syntax is:
cat [OPTION]... [FILE]...

Now let’s unravel the mysteries of the ominous file1 with which we played around in
the last section without ever knowing what’s in there:
$ cat file1
A file with copiable content

Well, that wasn’t very mysterious... It just contains a single line of text saying ”A file
with copiable content”. So that is what cat does: It reads the contents from a file and
prints them to the screen. What about another file:
$ cat onlinefile
This is a nice one liner
11Well, let’s say “readable by some humans” ;)

41

Ok, also nothing very interesting. But what about this concatenation thing? Have a
look:
$ cat file1 onelinefile
A file with copiable content
This is a nice one liner
$ cat onelinefile file1
This is a nice one liner
A file with copiable content

You see, cat concatenates the content of the files in the order you pass them on the
command-line. This is tremendously useful if you want to e.g. combine multiple files
into one very long file without copy-pasting all the stuff. How to do this will be shown
later.
As you may have realized, if files have a lot of content, i.e. many pages of test, cat

will be rather inconvenient because it just prints everything to the screen and you can’t
read fast enough to see everything:
$ cat hugefile

To read through such a file, you can use programs called “pagers” – they display text
files one page at a time. The standard pager on (GNU/)Linux is less(1).12 So, let’s
view our file:
$ less hugefile

To move around scroll forward one page, use SPACE, for backwards use B. You can also
move up and down one line with the arrow keys. To search for a pattern forward press
‘/’ enter the pattern and press ENTER, to search for a pattern backwards, press ‘?’ and
press ENTER. When you finally want to quit the program, press Q.
But then again, how are you supposed to know beforehand how big a file is, i.e.

whether it makes sense to use cat or less? There are different strategies and one you
know already:
$ ls -l onelinefile hugefile
-rw-r--r-- 1 me me 431888 Sep 18 17:52 hugefile
-rw-r--r-- 1 me me 25 Sep 17 13:53 onelinefile

If you look at the size column you can see that there is a huge difference between
these two files. Unfortunately, using bytes as a measuse is not very human-readable,
especially because even hugefile could in fact consist of only a single line – a very long
line, but it is possible. Therefore, it would be useful to be able to view the lines of a
file. This can be done with wc(1) “word count”:

12In the old days, the standard pager was more(1). When someone wanted to replace it they thought that
“less it more” and thus the name of less.

42

$ wc onelinefile
1 6 25 onelinefile

$ wc hugefile
7654 70552 431888 hugefile

wc provides with some useful metadata, i.e. data about data, about a file. The first
column is the number of lines in the file, the second column shows the number of
words in the file and the third column tells you how many bytes the file contains. You
can also list just one of these units using the -l | --lines for only the line count, -w
| --words for only the word count, and -c | --bytes13 for only the byte count.

4.3.2 Creating Content and I/O redirection

After so much information reception it is time to let you create something yourself!
And the first tool for this is echo(1). Very unexpectedly echo echoes what you pass to
it:
$ echo Hello command-line
Hello command-line

This seems easy enough. But don’t be fooled, echo is an extremely useful tool and will
introduce you to a lot of new concepts. Just as an aside: It is often a good idea to put
the stuff you want echo to echo in double quotes. Read the man page to find out why
this is so ;)
The first one is the concept of I/O streams14. A stream is a flow of data made available

through time. While this sounds rather abstract, you’ve already worked with streams
all the time in this course! Whenever you open a bash there are three standard streams
opened for this bash as well:
stdin or “Standard Input”, i.e. the stream into which you put data. This is usually your

keyboard because this is where you input the stuff you write. The bash then reads
those characters from the keyboard and displays them on the command-line.

stdout or “Standard Output”, i.e. the stream into which the data goes. In most cases
this is your screen or rather the terminal emulator on your screen. Yes, most of
the time a program produces output, it writes it to stdout!

stderr or “Standard Error”, i.e. the stream into which error messages are sent. This
is also mostly your screen and you’ve already seen this in action: Remember
when we tried to remove a non-empty directory with rmdir? There was an error
message displayed and while you saw it on your screen, this was actually written
to stderr and not to stdout.

13“Why -c?” you may ask. This is because years ago characters were always encoded in ASCII (see the
Wikipedia entry or, even better ascii(7) for an explanation) where each of them fit into one byte and
so the -c for character came into being.

14For Input/Output stream.

43

https://en.wikipedia.org/wiki/ASCII

But why make two stream which write to the same thing?! The reason is simple: They
do so usually, but you can manipulate them indiviually. Manipulate? Oh yeah, you
can play around with those streams until your head spins! This called I/O redirection.
It is time, to create your first file! You know now that whenever echo echoes some-

thing back to you, it actually reads input from stdin and puts it to stdout. But what
if we redirect stdout to a file? See here:
$ ls
contentdir grepfile onelinefile
dir1 hasfileinit renamedfile
dir2 hugefile rminteractive
dir3 join1 sedfile

'dir with spaces' join2 sedfile.bak
file1 linefile sortfile
file2 numericsort tablefile

$ echo "I want this in a file" > echofile
$ ls
contentdir grepfile renamedfile
dir1 hasfileinit rminteractive
dir2 hugefile sedfile
dir3 join1 sedfile.bak

'dir with spaces' join2 sortfile
echofile linefile tablefile
file1 numericsort
file2 onelinefile

$ cat echofile
I want this in a file

So now you know that by using ‘>’ you can redirect stdout to a file. Let’s try that again:
$ echo "More content" > echofile
$ cat echofile
More content

Ok, that was not expected. Where’s the former line gone? Well, it’s not here anymore. If
you use ‘>’ to redirect something to a file, the file will be truncated, i.e. totally emptied,
and afterwards the new content will be written to the file. If you want to just add
something to a file, without deleting what is already in there, you have to use “>>”,
which appends data to a file:
$ echo "And now a new line" >> echofile
$ cat echofile
More content
And now a new line

Note that there is no way to put something in the middle of a file using just the
command-line. To do this you need a text editor which we’ll discuss later.

44

You can also use this redirection on any other command, e.g. if you want to store its
output so you can look at it later:
$ ls -l > lsfile
$ cat lsfile
total 504
drwxr-xr-x 13 me me 4096 Sep 19 2018 contentdir
drwxr-xr-x 2 me me 4096 Aug 24 03:44 dir1
drwxr-xr-x 2 me me 4096 Sep 17 2018 dir2
drwxr-xr-x 2 me me 4096 Sep 17 2018 dir3
drwxr-xr-x 2 me me 4096 Sep 17 2018 dir with spaces
-rw-r--r-- 1 me me 32 Aug 24 09:18 echofile
-rw------- 1 me me 29 Sep 18 2018 file1
-rw-r--r-- 1 me me 29 Aug 24 03:45 file2
-rw-r--r-- 1 me me 472 Sep 23 2018 grepfile
-rw-r--r-- 1 me me 0 Sep 23 2018 hasfileinit
-rw-r--r-- 1 me me 431888 Sep 18 2018 hugefile
-rw-r--r-- 1 me me 46 Sep 23 2018 join1
-rw-r--r-- 1 me me 48 Sep 23 2018 join2
-rw-r--r-- 1 me me 405 Sep 23 2018 linefile
-rw-r--r-- 1 me me 0 Aug 24 09:21 lsfile
-rw-r--r-- 1 me me 26 Sep 23 2018 numericsort
-rw-r--r-- 1 me me 25 Sep 17 2018 onelinefile
-rw-r--r-- 1 me me 11 Sep 23 2018 renamedfile
drwxr-xr-x 2 me me 4096 Sep 18 2018 rminteractive
-rw-r--r-- 1 me me 331 Sep 23 2018 sedfile
-rw-r--r-- 1 me me 331 Sep 23 2018 sedfile.bak
-rw-r--r-- 1 me me 18 Sep 23 2018 sortfile
-rw-r--r-- 1 me me 747 Sep 23 2018 tablefile

Your ls output has now been stored in a file.
Now, what if we want to do something with stderr?

$ ls nonexistentfile
ls: cannot access 'nonexistentfile': No such file or directory
$ ls nonexistentfile > errorfile
ls: cannot access 'nonexistentfile': No such file or directory
$ cat errorfile
$ ls nonexistentfile 2> errorfile
$ cat errorfile
ls: cannot access 'nonexistentfile': No such file or directory

You can see that if we use ‘>’ to redirect the output, errorfile stays empty, because ls
didn’t print anything to stdout, just to stderr and because we just redirected stdout
to the file, stderr is still printed to the command-line. The redirection for stderr is

45

“2>” and you can see that using this results in the error message being not printed to
the screen, but written to the file instead.
To be honest, we cheated a bit: Actually the streams are numbered, starting with

zero: stdin is 0, stdout is 1 and stderr is 2. You can only write to stdout and
stderr because they are output streams while stdin is an input stream you can’t write
to.15 Thus, only output streams can be redirected using ‘>’ and you can prepend the
number of the output stream you want to redirect, i.e. “1>” or “2>”. If you don’t specify
anything, however, “1>” is implied because you much more often want to redirect
stdout than stderr and this is why just ‘>’ above worked as it did. And before we
forget: These numbers work the same way when you want to append stuff, i.e. “1>>”
is the same as “>>”, and “2>>” appends stderr to the given file. This is useful e.g. if
you want a program to log all error messages in a file.
But we talked about “manipulating streams individually”. What does that mean?

$ ls file1 nothere
ls: cannot access 'nothere': No such file or directory
file1
$ ls file1 nothere > lsfile 2> errorfile
$ cat lsfile
file1
$ cat errorfile
ls: cannot access 'nothere': No such file or directory

As you can see, it is possible to redirect stdout and stderr to different files. This can
be very useful if you have a program with a lot of output and you want to keep normal
output and error messages apart.
Note that if you want both of them to redirect to the same file you have to first

redirect one stream to the file and then redirect the other one to the other stream:
$ ls file1 nothere > twostreams 2>&1
$ cat twostreams
ls: cannot access 'nothere': No such file or directory
file1

To redirect stderr to stdout you use 2>&1 which reads approximately as “redirect
stderr to where stdout writes to”. You could also do the following:
$ ls file1 nothere 2> twostreams 1>&2
$ cat twostreams
ls: cannot access 'nothere': No such file or directory
file1

The result is the same. Note, however, that the order is important: First, redirect one
stream to a file, and afterwards redirect the other stream to it. This makes sense: If you
15This is pretty easy to understand if you think about the meaning of the streams: How would you try to

write to your keyboard?

46

read the sentence describing 2>&1 carefully, you’ll notice that it says “where stdout
writes to” and not “to stdout”. Thus, if you redirect stderr to stdout first, and after-
wards redirect stdout, stderr writes to where stdout wrote to before you redirected
it.
To finish this, we’ll give you a little shortcut: If you don’t want to care about this

first and second thing and consider “> filename 2>&1” an awful lot to type, you can
use the short version: “&> filename”. The above line then becomes:
$ ls file1 nothere &> twostreams

This is much more convenient, but introduces a new caveat: Not all shells are the same
and this shortcut is something that works in bash but does not necessarily do so in other
shells you may encounter. Just keep this in mind if you run into trouble ;)
In 4.3.1 when we introduced you to cat we mentioned that you can use it to combine

contents of multiple files into a single one. Now you have all the necessary tools; play
around with cat and I/O-redirection :)

4.4 Archiving and Compression
Sometimes it is useful to put files into a collection called an archive. An example would
be if you want to send multiple files via email, but you don’t want to attach 10 files.
Put them all in an archive and you only need to append a single file.
Another thing that is useful in many cases is compression. Compressing data means

to encode it in a way that uses less bits than the original data. This is possible by using
algorithms which make use of redundant data – most data has such redundant elements
because it comes in certain file formats which demand structure, i.e. patterns.

4.4.1 Archiving with tar

To create an archive of multiple files on (GNU/)Linux and many other UNIX-like sys-
tems you can use the tar(1) “tape archive” utility.16 You can tell by its name that this
program is pretty old, as it was created to work with tapes.
tar has an incredible amount of functionality (have a look at the manpage) but we

will cover only the most basic stuff here. If you need some more advanced archiving
stuff, do some research – the chances are pretty good, that tar is capable of fulfilling
your needs.
To create an archive you can use:

$ tar -cvf myfirstarchive.tar file1 file2 hugefile
file1
file2
hugefile
$ file myirstarchive.tar
myfirstarchive.tar: POSIX tar archive (GNU)
16If you come from the world of Microsloth Windoze you may already be familiar with ZIP archives.

47

We used file(1) here, which is a program that basically tells you what kind of file
something is. The explanation of the options is quite straightforward:
-c | --create tells tar to create an archive.
-v | --verbose tells tar to be verbose, i.e. to print each file it processes to stdout.
-f | --file=ARCHIVE tells tar how it should call the archive. It is conventional to

add the .tar extension to tar archives, though not strictly necessary. However,
do yourself a favour and use this extension ;)

After you told tar what you want and where to put it17 you have to put all files you
want to be in the archive on the command-line. If you pass a directory to tar it will
automatically put all files in the directory in the archive as well, so you don’t have to
tell it explicitely to do that like you had to with cp or rm.
To check that everything worked correctly, you can check which files are in an

archive by using the -t | --list option:
$ tar -tf myfirstarchive.tar
file1
file2
hugefile

This works essentially like ls but for archives.
However, if you received an archive, the relevant thing you want to do is not just to

list the files but to extract them on your system. To try this, create a directory, change
into it and extract the files there using the -x | --extract | --get option:
$ mkdir tar-dir
$ cd tar-dir
$ ls
$ tar -xvf ../myfirstarchive.tar
file1
file2
hugefile
$ ls
file1 file2 hugefile

It is always a good idea to list the contents of an archive you downloaded from the
Internet before extracting it, to make sure that it really contains the files you want and
not something else. Particularly, never extract an archive which contains files with
absolute paths! This is something only malware and very careless people do, so you
very likely don’t want anything from such entities on your machine.

17I.e. the name of the archive. This can be an absolute or a relative path.

48

4.4.2 Compression Utilities

While archiving today is done mostly with tar, there are several utilities to compress
files. Each of them uses a different algorithm to compress the data, but their usage is
very similar. The only thing you should know about the algorithms used is how efficient
they are in order to decide which one will be most appropriate for the problem you are
facing.
One important fact you should know before starting to use compression is the follow-

ing: Don’t compress data which is already in a compressed format! If you do this you’ll
end up with a file that is bigger than the original one. Why is this? Well, as pointed out
above, compression utilizes redundancies in data to store the same information in less
bits. It also adds a bit of metadata to make recovering of the original data possible. If
you have compressed data once and your compression algorithm is decent, there will
be no redundant bits left to remove. Thus, if you now apply compression again, the
algorithm will find nothing it can compress, but still adds its metadata, meaning you
have more data than before.
For this reason, it is a good idea to check if the format of the files you want to

compress already uses compression – well known examples are .pdf-files, .odt-files,
and even .docx-files. You can try this out for yourself after you’ve learned how to use
the utilities.

gzip(1)

The first tool we’re going to look at is gzip(1). Its basic syntax is:
$ gzip FILENAME...

By default gzip will do the following to each file you pass to it:
• Compress the data and store it in a file with the same name as the original plus
the .gz extension.

• Remove the original file.
This especially the second point is important to keep in mind – if you want to keep your
old file(s), use the -k | --keep flag.
To decompress a compressed file you have two options:
1. Use the -d | --decompress | --uncompress option.
2. Use the gunzip command which is more or less just a shortcut of the above.

By default this restores the uncompressed file and deletes the compressed one after-
wards – again you can use -k | --keep flag to change this behaviour.
However, sometimes you just want to see what’s in a compressed file without storing

the decompressed version. To do this, you have two options again:

49

1. Use the -c | --stdout | --to-stdout flag which little surprisingly just prints
the contents of the file to stdout.

2. Use the zcat utility which is again just a shortcut for the above.
Demo time!18

$ ls -lh hugefile
-rw-r--r-- 1 me me 422K Sep 18 2018 hugefile
$ gzip hugefile
$ ls hugefile
ls: cannot access 'hugefile': No such file or directory
$ ls -lh hugefile.gz
-rw-r--r-- 1 me me 163K Sep 18 2018 hugefile.gz
$ gunzip hugefile.gz
$ ls hugefile.gz
ls: cannot access 'hugefile.gz': No such file or directory
$ ls -lh hugefile
-rw-r--r-- 1 me me 422K Sep 18 2018 hugefile

You can see that the original file was compressed to less than half of its size! However,
you can do even better: Compressing data takes time and time is often precious. The
better the compression the longer it takes, which can be a problem. Therefore gzip
provides an option to adjust the speed vs. compression quality. You can pass it a
number between 1 and 9 preceeded by a dash to indicate you want the program to be
really fast (-1) or compress really good (-9). The default level is -6. Have a look:
$ ls -l hugefile
-rw-r--r-- 1 me me 422K Sep 18 2018 hugefile
$ gzip -1 hugefile
$ ls -l hugefile.gz
-rw-r--r-- 1 me me 192K Sep 18 2018 hugefile.gz
$ gunzip hugefile.gz
$ gzip -9 hugefile
$ ls -l hugefile.gz
-rw-r--r-- 1 me me 162 Sep 18 2018 hugefile.gz

So the best compression produces a file which is about 15% smaller than what the
worst compression creates. This may seem minor to you, but think about data centers
which have to store hundreds of thousands of terra bytes of data where this can make
an enormous difference.
And now a quick demonstration of zcat:

18The -h | --human-readable option to ls(1) makes the size output more readable by adjusting the
units; e.g. 1024 byts will be shown as 1K instead to indicate that this is one KB.

50

$ cat file1
A file with copiable content
$ gzip file1
$ ls file1.gz
file1.gz
$ zcat file1.gz
A file with copiable content
$ ls file1.gz
file1.gz
$ gunzip file1.gz

You can see that in this case the compressed file stays intact and just its content is
output to stdout. The last step is restores file1 as it will be used in exercises later in
the course.
Of the compression utilities we’re going to discuss here, gzip is the “worst” one in

terms of compression, but it is still widely used and “worst” in this case means still very
good – and fast!

bzip2(1)

The bzip2(1) command has pretty much the same syntax and default behaviour as
gzip, and there are a bunzip2 as well as a bzcat utilities. Compressed files get the
.bz2 by default.
However, not all things are totally identical, so read the man page of bzip2 and play

around a bit to compare the compression rates of bzip2 and gzip. In general, bzip2
offers better rates than gzip but worse than the following utility.

xz(1)

Again, syntax and behaviour are very similar to the above and there are unxz and xzcat
utilities offering the same functionality as with the other two programs. By default
compressed files get the .xz extension.
This is the best and most versatile compression tool of the ones we discuss which will

become apparent if you read its much longer man page and see what options it offers.
Again, play around to get a feeling for the program.

4.4.3 Combining Archiving and Compressing Data

You’ve seen that you can put multiple files into an archive which is a single file and
you know that you can compress files – wouldn’t it be convenient to combine these
features, i.e. to create an archive with all the files you want and then compress the
whole archive in one step? The good news is: You can. The better news is: tar has
options to combine this into one single step.

51

-z | --gzip What this option does depends on the arguments you pass to tar. If you
have given the -c option, tar will first create an archive and then compress the
whole thing in one step:

$ tar -cvzf files.tgz file1 file2 renamedfile
file1
file2
renamedfile
$ ls files.tgz
files.tgz
$ tar -xvzf files.tgz
file1
file2
renamedfile

Conventionally gzip compressed tar-archives use .tar.gz or less verbose .tgz
as extension.

-j | --bzip2 This compresses/decompresses a tar archive using the bzip2 utility.
Such archives usually get the .tbz or .tbz2 extension. Again you can also use
.tar.bz2 if you want to be more verbose.

-J | --xz To your surprise, this will create a xz-compressed archive. The conven-
tional extension is .txz in this case.

Note that if you use compression with tar the original files stay intact; just like when
you use tar to create an archive.

4.5 Textfiles, Pipes, Wildcards, and a Little Bit of Regex
Here we enter the last big section about working with files and their content on the
command-line, so take a deep breath and get ready to learn some incredibly useful
concepts and tools!
All of them are mainly concerned with working with textfiles. You’ve already en-

countered echo, cat, less, and wc, but we’ll add many more and find new applications
for some of them as well.

4.5.1 Of Heads and Tails

Sometimes you want to look only at the beginning or the end of a file, e.g. if you do
some C programming you may just want to see the #includes and comments at the top
of a source file, or you’ve written a LATEX file and forgot which packages you included,
but you want them in a new project, so again, you only want the first few lines. To do
this, there is the head(1) utility, whose basic syntax is:

52

$ head [OPTION]... [FILE]...

It prints the “head” of a file to stdout, which by default means the first 10 lines of
each file you passed to it as an argument. However, 10 is sometimes not enough (or
too much), so you can easily control the number of lines being printed with the -n |
lines=NUM option:
$ head linefile
Line 01
Line 02
Line 03
Line 04
Line 05
Line 06
Line 07
Line 08
Line 09
Line 10
$ head -n 5 linefile
Line 01
Line 02
Line 03
Line 04
Line 05
$ head -5 linefile
Line 01
Line 02
Line 03
Line 04
Line 05

As you can see, you can leave out the -n and write the desired number directly after
the dash.
On the other hand, you may have added something to a file and don’t remember

what it was, or if you are running a web server or anything else that creates logs it is
often useful to just look at the last lines of a textfile. The utility of choice in this case
is tail(1). Its syntax is equivalent to the one of head and by default it prints the last
10 lines of a file to stdout.
There is one common use case for tail, however, which is not used with head: We

mentioned programs creating log files, i.e. files which log their activity. These files
increase through time as the programs append more and more data to the end of the
logs. If you want/have to monitor such programs, it is often useful to watch the logs
while growing, but of course you only want to see the new entries at the end of the
file. This can be done using tail with the -f | --follow option. To test this, do the
following:

53

1. Type tail -f linefile.
2. Open a second terminal window and change to the unixcourse directory.
3. Append a new line to linefile:

$ echo "newline" >> linefile

4. In the window which runs tail -f linefile you will see that a new line has
been added.

Now try what happens, if you type ‘>’ instead of “>>”.
To stop tail from running, go to the terminal window it runs in and press CTRL-C.

This will terminate the process. We’ll explain this to you in 4.6, don’t worry.

4.5.2 Sorting Text and Using Pipes

You’ll encounter many situations where you want to sort the content of a file – e.g. a
list of words you want to sort alphabetically or some numbers representing measure-
ments and you want to quickly check their range. This is what the very fittingly named
sort(1) program is good for:
$ cat sortfile
T
B
A
W
c
N
B
I
P
$ sort sortfile
A
B
B
c
I
N
P
T
W

That was easy enough! And now for numbers:

54

$ cat numericsort
9
253
85
76
0010
1000
$ sort numericsort
0010
1000
123
253
76
85
9

What?! Most likely this did not correspond to your expectations. How can sort think
that 1000 is less than 9?? Of course, sort is not that stupid. The problem is caused by
different expectations: sort sorts text alphabetically and numbers are just part of the
alphabet: They come before all letters and there are exactly 10 of them: 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9. Thus, 1000 and 9 are just words – 1000 starts with 1 which precedes 9
and must thus be placed first, like abcd precedes z. That is what alphabetically sorted
means: you order everything according to their first letter, and only then you look at
the second one to order those with the same first letter further, etc.
“OK”, you may say, “this may be an answer, but it is still pretty annoying.” Cor-

rect. And because this problem is very common, sort offers the -n | --numeric-sort
option which tells it to sort the lines of a file numerically:
$ sort -n numericsort
9
0010
76
85
123
253
1000

Much better!
In the above output, which sorted the lines of sortfile alphabetically the letter B

appeared twice. This is all nice and fine in many situation, but sometimes you want only
the unique entries in a file, e.g. if you want to check how many different measurements
you had or howmany different users accessed your web server. If you do some research,
you’ll find that this is what the uniq(1) program does. If you read its man page you’ll
find the following:

Note: ‘uniq’ does not detect repeated lines unless they are adjacent.

55

What this essentially means is, that you have to be sure that all duplicate lines in a file
are adjunct before passing the file to uniq. One possibility to achieve this is to sort the
file first. Using what you’ve just learned and I/O redirection, you can do the following:
$ sort sortfile > tmp
$ uniq tmp
A
B
c
I
N
P
T
W

Great, there is only one line now starting with B. However, this workflow is rather
clumsy. And worse: Imagine the file whose unique entries you want has 10 or even
100 GB – this approach forces you to create another file of the same size just for this
little task.
Surely, there must be more intelligent way to do this! There is: Pipes.19
A pipe is a unidirectional data channel which allows you to “pipe” the output of one

program as input to another program, i.e. stdout of one program will be sent to stdin
of another program.20
To pipe the output of one program to another one, you use the vertical bar ‘|’:

$ sort sortfile | uniq
A
B
c
I
N
P
T
W

It does not look like much, but this is one of the most powerfull abilities the command-
line offers because you can combine arbitrarily many commands in this manner, each
one changing the output and passing it to the next. Try to find out what the following
line does and what output you expect before running it:
$ sort sortfile | uniq | head -n 5 | tail -n 3

Or what about this:
19For those of you eagerly reading man pages who have already found the -u | --unique option for

sort: Yes, this works perfectly fine, but for now, pretend you have no idea ;)
20Actually, pipes can do more than just this, but for our purposes, this is totally sufficient.

56

$ head -n 200 hugefile | less

You can do an incredible lot of things with piping and we’re going to encounter more
use cases soon.
Note that you pipe stdout to stdin, leaving stderr alone. This means that if some-

thing in your pipe goes wrong, you’ll see the error messages printed to the screen:
$ ls file1 file2 file3 file4 | head -2
ls: cannot access 'file4': No such file or directory
file1
file2

4.5.3 Wild Cards and Gentle Regexes

Until now you passed each argument you wanted a command to process directly to it,
only using tab completion to increase your speed.
But, what if you have a directory with hundreds of files and you don’t even know

all of their names, but you do know that all of them contain some string or have a
common number in their name? In this case you may want to use wildcards. Wildcards
are characters the shell treats as special and which enable you to look for patterns.
They are:
* The asterisk matches any string, including the null string, i.e. the empty string.
? The question mark matches any single character.
[...] This patternmatches any one of the enclosed characters. There are several things

to consider here:
• Special characters loose there special meaning within brackets.
• If the first character is ‘^’ the meaning of the brackets change to “match any
characters not in the given set”, e.g. [^ab] matches anything except for ‘a’
and ‘b’.

• You can use ranges within brackets, e.g. [0-9]matches any number between
0 and 9, [a-z] matches lower case characters, and or [A-Z] upper case.

• If you want to match a special character in your bracket expression, there
are some simple rules:
– To match a ‘^’, just put it somewhere else than the start, e.g. [a^]
matches ‘a’ or ‘^’.

– To match a ‘-’ put it as last or first character, e.g. [ab-].
– To match a closing bracket, put it at the first position (or after the caret
if you want to negate it).

But what does that mean? Let’s look at some examples:

57

$ ls *
contentdir file1 join2 rminteractive
dir1 file2 linefile sedfile
dir2 files.tgz lsfile sedfile.bak
dir3 grepfile myfirstarchive.tar sortfile

'dir with spaces' hasfileinit numericsort tablefile
echofile hugefile.gz onelinefile tar-dir
errorfile join1 renamedfile twostreams

$ ls *file
echofile grepfile lsfile renamedfile sortfile
errorfile linefile onelinefile sedfile tablefile
$ ls file*
file1 file2 files.tgz
$ ls *file*
echofile files.tgz linefile sedfile
errorfile grepfile lsfile sedfile.bak
file1 hasfileinit onelinefile sortfile
file2 hugefile.gz renamedfile tablefile
$ ls file?
file1 file2
$ ls [flsn]*
file1 files.tgz lsfile sedfile sortfile
file2 linefile numericsort sedfile.bak

Try to explain the output yourself and only read on afterwards!
The first example just passes a ‘*’ to ls and as this matches any pattern, all files

in the directory are listed. The second example matches all files whose name ends
in file. The third example matches all those whose name begins with file. The
fourth example matches any file whose name contains the string file somewhere. The
fifth example matches any file whose name starts with file followed by exactly one
additional character. The last example matches any file whose name starts with f, l,
s, or n.
Wildcards can be very handy to match only certain files but not others. However,

they are restricted to the command-line and still very coarse grained filters. What if
you want to check if a pattern exists e.g. at the end of lines in a file? This can be
achieved using a regular expression, or regex for short.

Regular Expressions and grep(1)

First, let’s shortly introduce you to the grep(1) utility. This is the program of choice if
you want to “grab” some text patterns in a file. Using less and cat you know how to
look at everything that’s in a file and in combination with sort, uniq, head, and tail
you’ve learned to remove some information, but until now you can’t look for some
specific patterns in a file, e.g. is there a measurement of exactly “3.14159265358979”

58

or a sentence which contains the word “octothorpe” in the file?
With grep you’re able to do this. Its basic syntax is:

grep [OPTION]... PATTERN [FILE]...

and the program looks for PATTERN in each file you pass to it. So, let’s see if this
measurement we talked about above is found:
$ cat grepfile
this line contains a hashtag "#"
a hash "#" can be found in this line
but only here you'll find a wild octothorpe "#"
A line ending in ZZZZ
aaaaa
aaaa
aaa
a
and for the curious: hash == hashtag == octothorpe

// this is single line C comment

This one ends in asdZ
a comment in bash!

(parentheses)(but nothing in between).
The quick brown fox jumps over the lazy dog.

Starting spaces.
and this one in zzzz
on (this line) someone inserted (rather random) parentheses
$ grep '3.14159265358979' grepfile
$ grep 'octothorpe' grepfile
but only here you'll find a wild octothorpe "#"
and for the curious: hash == hashtag == octothorpe

The initial cat command is just shows you what’s in the file. The others tell you that
there is no line containing the beginning of π in this file, but two contain the word
“octothorpe”. If you also want to know which line(s) contain matching patterns, use
the -n | --line-number option to grep. Note that you should always enclose the
pattern you pass to grep in single quotes because otherwise, shell wild cards may get
in your way. We’ll see an example of this later.
Very well, but what about this regex stuff? The pattern you pass to grep can be a

regex. Using regexes is similar to using wildcards, but it is much more powerful. To
get the official definition for POSIX21 regular expressions you can read regex(7), but
21“Portable Operating System Interface X”. The ‘X’ was appended because it was intended for UNIX-like

OSs.

59

we’ll do it a bit less formal.
As with wildcards, certain characters in regexes do not have their literal meaning.

These are called metacharacters. The metacharacters for basic regular expressions are:

^ The caret matches the beginning of a line.
$ The dollar sign matches the end of a line.
. The dot matches any single character (similar to the ‘?’ wildcard).
[] As with wildcards, a bracket-expression matches any single character within

the brackets. Note that ranges in regexes work as you expect, i.e. [a-z]
matches all lowercase letters. The caret, dash, and closing bracket can be
included the same way as with wildcards.

[^] A bracket-expression starting with a caret matches any single character not
found within the brackets, [^abc] matches anything except a, b, and c.

* The asterisk in a regular expression matches the preceding element 0 or more
times. Note that this is different from the meaning of the asterisk as a wild-
card! Using wildcards, the expression b* matches everything that starts with
the letter ‘b’, but as a regular expression it matches 0 or more ‘b’s!

With these new knowledge, try the following using grep with grepfile:
• Print all lines which contain a ‘#’.
• Print all lines which begin with a ‘#’.
• Print all lines which end in a punctuation mark.
• Print all lines which end in ‘Z’ or ‘z’.
• Print all empty lines.
• Print all lines which contain no ‘a’.

Check you results by looking at grepfilewith cat or less. If you can solve all of them:
Great! If not: Don’t despair, it takes time to get used to the concept of regexes.
There is also a very useful component to grep and regexes if you like to play cross-

word puzzles: On many distros, you can find at least one word list of the language your
system runs on in /usr/share/dict. The most common one is just called “words”. On
my system it contains 102401 words. Suppose now that you are looking for a mountain
range consisting of 12 letters, the second one is a ‘p’, and there fifth, fourth, and third
to last letters are “hia”:
$ grep '^.p.....hia..$' /usr/share/dict/words
Appalachia's
Appalachians

60

As an aside: If you ever want to look for one of the metacharacters as a literal, e.g. you
want to know which lines contain a ‘$’ you have to escape them with a backslash, i.e.
you have to type “\$” in your pattern.
However, regexes don’t end here. There are some more metacharacters than those

we’ve see so far. These are used for so called extended regular expressions and we’ll
cover them now:
() The expression between the parentheses is seen as a single element from the

outside, e.g. (abc)* matches 0 or more occurences of the string “abc”, e.g.
it matches “abc”, “abcabc”.

\n Matches the nth expression delimited by parenthesis, e.g. (ab)(cd)..\2\1
matches any string that starts with “abcd” followed by two characters fol-
lowed by “cd” followed by “ab”.

{m,n} Matches any string that contains the preceding expression at least m and at
most n times, e.g. q{2,5} matches 2, 3, 4, or 5 consecutive ‘q’s.
The version of grep that is installed onmost (GNU/)Linux distros also allows
some variations of this scheme: If you pass only one number n without
a comma, the expression matches occurences of exactly n times the same
character, e.g. d{3} matches exactly “ddd”. You can also leave out one of
the numbers but provide a comma to give just a lower or upper bound, e.g.
i{,10} indicates “up to 10 consecutive ‘i’s” while i{10,} reads as “at least
10 consecutive ‘i’s”.

? Matches the preceding expression zero or one times, e.g. friends? matches
“friend” or “friends”. Like with the asterisk, this differs from the question
mark if it is used as a wildcard! The wildcard ‘?’ is the same as the regex
‘.’.

+ The plus sign matches one or more occurences of the preceding expression,
e.g. w+ matches ‘w’, “ww”, “www”, etc. The difference to the asterisk is
that the plus sign does not match zero occurences.

| The vertical bar matches either the preceding or the following expres-
sion, e.g. ab|Bc matches “abc” and “aBc”. Of course, this could also
be done by a[bB]c, so why care about ‘|’? Well, if you combine it with
parentheses or braces, it becomes clear: (sw)|m|(gr)eet matches “sweet”,
“meet”, or “greet” or (Ada)|(A\). Lovelace matches “Ada Lovelace” and
“A. Lovelace”. Or think about something like a{2,3}|e{1,5}.

Unfortunately, with these metacharacters things are a bit confusing: While you had to
use a backslash if you wanted the literal meaning of the metacharacters we talked about
before, with this group it is the other way around: grep (and other tools) interpret them
literally, unless you prepend a ‘\’! For example, ‘+’ is interpreted as a plus sign, you
have to type “\+” to get the regex meaning. This can be pretty annoying, especially as
this behaviour is not consistent: Some tools treat all metacharacters as metacharacters.
And to make things really funny: If you pass the -E | --extended-regexp to grep, it
will also interpret all metacharacters as metacharacters!
However, this will become less confusing as soon as you start using regexes regularly.

61

Try to do the following, and play around with the -E switch:
• Print all lines which contain at least one ‘Z’ or ‘z’.
• Print all lines which contain expressions enclosed in parentheses. Then try to print
all lines where there are two expressions in parentheses which follow directly
after each other. And finally try to print only those lines where the parentheses-
expression have some text between them.

• Print all lines containing the word “fox” or the word “bash”.
• Print all lines which consist exclusively of ‘a’s.
• Print all lines which consist exclusively of 3 or 4 ‘a’s.
• Print all lines which consist exclusively of at least 3 ‘a’s.

Check you results by looking at grepfile with cat or less.
After all metacharacters being covered and some practice we come to where we said,

regexes and shell wild cards may get in their way. See the following example:
$ grep file? grepfile
grepfile:this line contains the string "file1"
$ grep -E 'file?' grepfile
this line contains the string "file1"
whereas here, we have file2
Another file present ist called "file23

What happened here? In the first example you passed “file?” to grep without sin-
gle quotes. Remember, that the shell calls any command you type and passes on the
arguments you provide. However, in order to make wild cards possible, the shell first
subsitutes all wild cards expressions with their expansions and because “file?” matches
the files file1 and file2 in the current directory, the shell actually calls
$ grep file1 file2 grepfile

which tells grep to look for the pattern “file1” in file2 and grepfile. This is the
reason why grep prepends grepfile: in response to the first command because if you
pass more than one file to search the program by default gives you the name of the
matching file and the matching line. Sounds rather confusing? Well, then just use
single quotes for patterns you pass to grep and such problems will never bother you :)
Now that you know some basic stuff about regexes and know the basics of grep, let’s

move on to two other programs which use regexes extensively:

62

sed(1) and awk(1)

These two utilities are much more powerful than those you encountered before, espe-
cially because awk is in fact a full-blown programming language, but we’ll introduce
only the very basics.
sed which is an acronym for “stream editor” is a tool with which you can edit a

stream of textdata and print it to stdout (or redirect it to a file, of course). The usual
way to invoke sed is:
sed [OPTION]... -e 'SCRIPT' [FILE]...

where SCRIPT is a command you pass to sed that tells it what to do. sed will then
apply this command to each line of the input file. Sounds very confusing, but let’s
work through an example:
$ cat sedfile
This text talks about birds. Why? Because we all know that birds are
the best animals. All birds are much more beautiful and intelligent than
any other species (including humans). No one can ever doubt that birds
are superior. And one day, birds will take over the world! Thus, don't
ever mistreat a bird, it will get its revenge!

What utter nonsense! Birds?! Ridiculous! Surely it’s moles who’ll subdue the world in
the near future! This text must be adjusted:
$ sed -e 's/bird\(s\)\?/mole\1/g' sedfile
This text talks about moles. Why? Because we all know that moles are
the best animals. All moles are much more beautiful and intelligent than
any other species (including humans). No one can ever doubt that moles
are superior. And one day, moles will take over the world! Thus, don't
ever mistreat a mole, it will get its revenge!

Much better! But how to dissect the command to sed?
s This is the command which means “substitute” whose syntax is

s/REGEX/REPLACEMENT/FLAGS
There are other commands, like d for delete or a for append some-
thing.

/ The slash is used here as a delimiter character. This is just conven-
tional and you can use any other character as a separator. Note,
however, that in case you want your delimiter appear in the REGEXP
or REPLACEMENT you have to escape it using a backslash.

bird\(s\)\? The pattern to match.22

22This regex is more complicated than it has to be, because we wanted to illustrate grouped expressions.
Can you give a simpler version that works as well in this situation?

63

mole\1 The replacement. The \1 refers to the first expression in parentheses in the
pattern before, so if there is no ‘s’, it will be empty and if there is, it will
print one.

g This is a flag meaning “global”. If you don’t use it, sed only substitues the
first match of the regex on a line and leaves the rest alone. Just repeat the
command above but delete the g to see what happens.

Phew, that’s a lot to congest. But once you get the hang of it, sed can be immensely
useful.
A word of caution about redirection: Only in rare cases do you want to see the

changes sedmade just on the command-line; usually you want them to be stored some-
where and in many cases you want to replace the old file with the new content. Beware,
the following will not work in the way you may expect:
$ sed -e 's/bird\(s\)\?/mole\1/g' sedfile > sedfile

If you do this, sedfile will be empty afterwards. But why? When you invoke sed and
tell it to redirect its output to sedfile the first thing it does is to open this file for writing
and because you used the greater-than operator it will truncate the file (i.e. empty it)
and only then starts working on the now empty file. If you used the >> operator, the
changed text would be appended to the current file, but the old content would still be
there – most likely also not, what you wanted. This leaves you with two possibilities:
1. Redirect the output to a temporary file and use mv afterwards. This has the big

advantage that you can check your changes before making them final.23

2. Use sed’s -i[SUFFIX] | --in-place[=SUFFIX] option. This tells sed to edit files
in place. If you supply a SUFFIX, sed will create a backup of your original file
with this suffix, which you can use to restore the old file if something has gone
wrong.

sed can also be used to print only certain lines from a file, regardless of any patterns.
This can be done using the p command and the -n option: If a line doesn’t match
anything you specified in a command, by default sed will print this line unchanged.
To suppress this behaviour and show you only those parts of the file that sed works
on is what the -n | --quiet | --silent option is for. The p command is the “print”
command and can be prepended by a line number, e.g.:
$ sed -n -e '1p' sedfile
This text talks about birds. Why? Because we all know that birds are

prints only the first line of sedfile. We’ll use this in 4.5.4.
After sed, we’ll have a quick glance at awk. The awk program is actually an implemen-

tation of the AWK programming language which owes its name to its creators Alfred
23It is in general a good idea to first output sed’s results to stdout or pipe them into less to check if the

changes work as intended.

64

Aho, Peter Weinberger, and Brian Kernighan, but after learning it, some people have
concluded it must come from “awkward”. We won’t go into any details here, just be
aware that it exists and look at the following example:
$ awk '{ print "line" NR ": " $0; }' sedfile
line1: This text talks about birds. Why? Because we all know that birds are
line2: the best animals. All birds are much more beautiful and intelligent than
line3: any other species (including humans). No one can ever doubt that birds
line4: are superior. And one day, birds will take over the world! Thus, don't
line5: ever mistreat a bird, it will get its revenge!

You can see that this command prepended the word “line”, the line number, stored
in the variable (see 4.7) NR and a space in front of each line. The current input line is
stored in the variable $0.
If you are totally confused now: That’s OK, sed and awk are rather advanced tools,

but as they can be immensely useful it is great to know about them and what they do
in general, so you can come back and learn them in-depth if you ever need to. There
are whole books written just about these two programs and other books that just treat
regexes, so there is a lot to learn, definitely more than we can cover in this introducory
workshop.

4.5.4 Cutting and Joining

Before we leave you alone with textfiles, there are two more things to talk about. The
first has to do with cutting stuff up and joining it together.
You’ll often have files which consist of columns and lines, representing some kind of

table. Have a look at tablefile:
$ cat tablefile
12.9 2.6 9.9 5.9 9.5 7.9 1.2
13.6 9.3 7.8 1.9 6.7 5.7 8.2
13.1 7.4 1.0 3.7 3.0 1.8 13.1
8.4 12.3 13.1 12.8 10.1 7.3 11.9
1.5 9.3 10.4 2.6 9.6 1.1 12.8
5.8 11.6 7.1 5.2 1.7 1.8 9.6
8.7 2.9 11.8 2.7 3.7 5.4 10.6
2.7 2.7 3.6 13.0 4.2 10.8 1.8
9.6 5.9 5.7 9.5 9.5 3.1 11.2
10.9 1.3 3.0 4.9 8.2 7.7 6.6
13.0 12.0 3.6 13.5 7.8 12.4 4.9
1.6 12.5 1.4 6.9 10.2 3.7 3.8
7.3 5.1 11.2 12.5 1.0 10.3 3.1
6.6 12.2 5.4 2.2 13.9 12.5 12.2
8.7 2.4 10.9 6.7 5.9 5.2 11.8
11.4 7.2 1.3 12.2 4.7 3.2 10.7
3.4 7.2 7.4 12.8 4.9 6.4 9.2

65

3.9 12.7 3.2 3.3 6.7 8.0 8.5
9.5 12.8 6.8 2.7 7.2 2.4 13.7
12.4 3.6 2.1 3.1 10.9 7.7 12.8
10.4 1.2 5.4 2.6 7.0 7.5 8.8
8.9 7.3 3.6 6.3 7.2 3.8 7.4
12.9 12.7 8.2 11.1 2.5 5.3 10.3
11.2 6.4 11.9 7.3 2.6 10.5 3.4

This file consists of 24 lines and each line has 7 colums. This could e.g. be the output of
a program which took measurements for 1 week, every hour, e.g. the second value in
the first column represents the measurement at 1am (we started at 00:00) on Monday.
All nice and fine, but the file is almost unreadable for a human. This is, where cut(1)
comes in: Its purpose is to cut out columns while leaving out others and its basic syntax
is:
cut OPTION... [FILE]...

It has some very useful options:
-d | --delimiter=DELIM This tells cut by which character fields in the file are sepa-

rated. In the case above they are separated by spaces, but it could be any other
character as well.

-f | --fields=LIST This tells cut which fields it should output.
--output-delimiter=STRING If you want the output to be delimited differently than

the input, you can use this option.
Thus, if you want just the the measurements of Wednesday, you can do:
$ cut -d" " -f3 tablefile
9.9
7.8
1.0
13.1
10.4
7.1
11.8
3.6
5.7
3.0
3.6
1.4
11.2
5.4
10.9
1.3

66

7.4
3.2
6.8
2.1
5.4
3.6
8.2
11.9

Or what about the files from Tuesday to Thursday:
$ cut -d" " -f2-4 --output-delimiter="^T|^T" tablefile
2.6 | 9.9 | 5.9
9.3 | 7.8 | 1.9
7.4 | 1.0 | 3.7
12.3 | 13.1 | 12.8
9.3 | 10.4 | 2.6
11.6 | 7.1 | 5.2
2.9 | 11.8 | 2.7
2.7 | 3.6 | 13.0
5.9 | 5.7 | 9.5
1.3 | 3.0 | 4.9
12.0 | 3.6 | 13.5
12.5 | 1.4 | 6.9
5.1 | 11.2 | 12.5
12.2 | 5.4 | 2.2
2.4 | 10.9 | 6.7
7.2 | 1.3 | 12.2
7.2 | 7.4 | 12.8
12.7 | 3.2 | 3.3
12.8 | 6.8 | 2.7
3.6 | 2.1 | 3.1
1.2 | 5.4 | 2.6
7.3 | 3.6 | 6.3
12.7 | 8.2 | 11.1
6.4 | 11.9 | 7.3

This looks much better!24 If you want to see only the measurements taken between
10am and 1pm, you can combine this with sed and pipes:
$ sed -n -e '11,14p' tablefile | cut -d" " -f2-4 --output-delimiter="^T|^T"
12.0 | 3.6 | 13.5
12.5 | 1.4 | 6.9
24The ^T in the command-line above means a tab-character. You can reproduce it on the command-line

by typing CTRL-V followed by a tab.

67

5.1 | 11.2 | 12.5
12.2 | 5.4 | 2.2

First we select the hours we need and then we cut out the columns for Tuesday, Wednes-
day, and Thursday.
Another thing you may want to do is joining two files which share a common field.

To achieve this, you can use join(1):
$ cat join1
Price ArtNr
10€ 1
20€ 2
100€ 3
400€ 4
$ cat join2
ArtNr Name
1 pendrive
2 cable
3 screen
4 laptop
$ join -1 2 -2 1 join1 join2
ArtNr Price Name
1 10€ pendrive
2 20€ cable
3 100€ screen
4 400€ laptop

So, you tell join that the second field in the first file (-1 2) and the first field in the
second file (-2 1) are identical and it should use them to join the files. There are some
other options and if you’re interested play around a bit :)

4.5.5 Editors (a.k.a. Religions)

The last step on our journey through textfiles leads us into the fiercely disputed field of
text editors. As the title of this section suggests, there are people who vehemtly insist
that the editor they use is the only true one and all the others should be forbidden. It
may well be editors about which the first flamewars were fought and they are fought
until today with absolutely no progress or use.25
Our stance is: Taste differs and it’s no good arguing about it, but we want you to be

aware that you may encounter people who’ll attack you just because your editor is not
theirs.
One reason why editors may be such a emotional topic is that the really powerful

ones take a considerable time to get used to and a lifetime to master. Thus, as soon

25You think we’re joking? Have a look at this.

68

https://en.wikipedia.org/wiki/Editor_war

as you learned one of those you may be really proud of you on the one side and feel
like a total beginner if you encounter one of the others, which often leads to aversive
reactions.
There are editor which need a GUI while others can work directly within a terminal.
Common GUI editors on (GNU/)Linux systems are:

KWrite The KDE-Desktop’s lightweight editor.
gedit The GNOME-Desktop’s standard editor. If you left all the defaults intact when

you installed the GUI of you VM at the beginning of the course, gedit will be
installed on your system and just called “Text Editor”.

There are gazillions of others – if you’re interested look around and try some of them
until you find something.
But as this course is about the command-line, we’re emphazising on editors you can

use in a terminal.
nano This very small and intuitive editor is now installed by default onmany (GNU/)Linux

systems.
vi(m) vi pronounced “Vee-Eye” and vim which stands for “Vi IMproved” and thus just

pronounced “vim” are one of the main editors used by many programmers and
sysadmins alike. They are incredibly powerful and have tons of features.

emacs The archrival to vi(m) for a long time, this giant of an editor is often described
as “actually an operating system which happens to include a text editor”. If you
put in the effort to learn to use it efficiently, you’ll be very productive when
working with text.

Instead of talking about features of these editors, we’ll let you learn them by their own
means. First do the following:
$ sudo apt install vim emacs

This will install both editors. Now choose which one you want to try out first.
If it is vim, type:

$ vimtutor

And you will be in an interactive tutorial, showing you the basics of vim.
In case you chose emacs, type:

$ emacs

After the editor started, type CTRL-H followed by T. The tutorial will start.
We won’t say anything else about editors; it is important to know how to use one of

them, but which one doesn’t really matter. Try a few, play around and stick with what
you like most :)

69

4.6 Processes
After so much textfiles, we start with something completely different. You have worked
a bit with commands by now, and maybe you wondered at some point, what they are.
In very general terms we speak of a program as an executable binary that can be run
on a CPU. Whenever you enter a command, the corresponding binary is loaded into
memory and then each instruction is executed by the CPU. As soon as a program runs,
it is called a process, i.e. a process is a program in execution. To make the difference a
bit clearer: You have only one program found at /bin/ls but you can run it in different
terminals at the same time, thus creating multiple processes from a single program.
If you want to see the processes currently running on your system the most widely

used tools are ps(1) and top(1). Their main difference is that top is interactive while
ps is not. To view all processes that are currently running from the terminal you are
working on, you can do:
$ ps

PID TTY TIME CMD
2351 pts/4 00:00:00 bash
4963 pts/4 00:00:00 ps

This tells you that there are just two processes associated with this terminal: your bash
and the ps process which has already finished as soon as you can read the output. The
displayed fields have the following meaning:
PID This is the “Process ID”. Each process is assigned a number that is unique on the

currently running system, to enable the system (and you) to refer to it unambigu-
ously – the name alone would not be sufficient.

TTY This tells you with which terminal26 the process is associated. As you are working
in a terminal emulator and not on a real terminal the “pts” in the output means
“pseudo-terminal”.

TIME This tells you how many CPU time the process has used cumulatively.
CMD Rather obviously, this is the command’s name.
To see all processes currently running on the system, use:
$ ps -elf

This creates a listing of all processes (-e) in a long (-l) and full (-f) format to show a
lot of extra information.27 We don’t print it here, as the output is almost always more
than 100 lines.

26TTY stands for teletypewriter, a rather old acronym.
27You’ll find the options aux (without a dash!) doing something very similar in a lot of forums as these

are the traditional options.

70

ps has a myriad of options and tweaks available, so it is highly recommended to read
the man page. Additionally ps is a very old program and has acquired a lot of legacy-
stuff during the time. Thus, there are many options which do almost-but-not-exactly
the same, there are options with no dashes, one dash, or two dashes, etc. Therefore,
reading the man page in this case also provides you with a glance of history.
top is also a very old program, but it is still very useful. If you start it the process will

fill your screen and update periodically. The first line of the output will look something
like this:
top - 14:11:33 up 4:48, 6 users, load average: 0.02, 0.02, 0.00

This tells you the current time, how long the system is running, how many users are
currently logged in and the load average. Note that a load average of 1 means one CPU
is fully loaded, i.e. if your computer has more than one CPU or more than one core, a
load of more than 1 is no problem.
By default, processes are sorted according to the %CPU column, which tells you how

much CPU they are using.
To quit the program type Q.
Again it is a good idea to read the man page to get acquainted with the many things

you can do with top.
The processes you’ve seen so far run for only a very short time, e.g. the ouput of

ls appears immediately and you can issue the next command. However, in 4.5.1 we
already encountered a program which didn’t return to command-line on its own, i.e.
when we used tail -f. While this programs runs until you tell it to stop, there are
other programs which just take a long time and it may be very annoying if they block
your command-line all the time. Consider starting the Firefox web browser from the
command-line: It would be pretty bad if you had to choose between browsing and
working.
Thus, there are a lot of tools to control processes. First of all, there are keyboard

shortcuts which send signals28 to processes. Signals tell a process what to do, e.g.
SIGTERM tells the process to terminate. The keyboard shortcuts you can use are:

CTRL-C Send an interrupt signal (SIGINT) to the process currently blocking the
command-line. Usually, this leads to the process being terminated, as you
learned in 4.5.1 when you stopped the tail -f process.

CTRL-Z Sends a stop signal (SIGTSTP) to a process. A stopped process won’t react
to anything, unless you send it a SIGCONT (for “continue”) signal.

Some processes just need a long time or even don’t have a defined point in time when
they stop, e.g. compiling a large program takes a long time and your web browser
28If you want to know more about which signals are available on (GNU/)Linux systems, you can read

signal(7). And if you are into programming: They are a handy tool for inter-process communication.

71

should only stop when you tell it to do so. How can you use such programs without
sacrificing your command-line? The easiest way is to start them with an ampersand
appended on the command-line, e.g.
$ firefox &
[1] 5133
$
[1]+ Done firefox
$

As you can see, Firefox is started, the shell tells you that it has job number 1 and PID
5133. The ampersand tells the shell to start the process in the background and the next
time you press ENTER it will tell you that the job has finished. However, if you could
e.g. start a long backup job, put it in the background and the shell will inform you as
soon as its done, even if this takes hours or days (provided you don’t shut down your
computer or close the shell during this time as that would kill the job).
The job number is also a unique number; not on the whole system, but just on the

current shell. As it is usually much smaller than a PID it is also easier to remember for
humans. To have a look how many jobs are currently associated with your bash, you
can use the jobs shell-builtin.

4.6.1 Process Control

Now that you know how to find out which processes are running, either on the system
or within your shell session and you know that you can start them in the background
and are able to send two signals to them using the keyboard.
However, there is more you can do with processes. The bash offers some builtin

functionality for this:
If you have a job running in the background, but you want it back on your shell, you

can use the fg builtin, e.g.
$ xclock &
[1] 5257
$ jobs
[1]+ Running xclock &
$ fg 1
xclock
^Z
[1]+ Stopped xclock
$ bg 1
[1]+ xclock &
$ ps

PID TTY TIME CMD
5130 pts/5 00:00:00 bash
5257 pts/5 00:00:00 xclock

72

5264 pts/5 00:00:00 ps
$ kill 5257
$
[1]+ Terminated xclock

In this example you start an xclock in the background. Then you put it into the fore-
ground using fg 1 where 1 is the job ID of the process. After this, you lost access
to your shell. The ^Z in the output above indicates pressing CTRL-Z, i.e. sending a
SIGTSTP to the process. After this you’ll realise that xclock will no longer interact with
you – the process is frozen. To let it continue in the background, you use the bg builtin.
Afterwards you find out xclock’s PID and send it a signal using kill.29
kill is one of the most important tools when doing process control. Read its man

page to understand what it does and how. One last caveat: If you can avoid it, don’t
ever use kill -9 to terminate a process. This will end the process immediately without
giving it the possibility to clean up (close open files, remove temporary files, store your
session, etc.), leaving it in a messy state which can lead to strange behaviour when you
start it again. The only situation where killing a process in this way is when it doesn’t
react to anything else anymore and hogs a lot of resources you need.

4.7 Variables and Your Environment
We’ve covered a lot of ground already and by now you know a lot of commands and
other stuff. However, one thing we didn’t talk about yet is how does the shell know
which program to execute if you pass a name like “ls” to it? The answer: There is a
variable in your environment telling it what it needs to know.

4.7.1 Variables

If you’ve already done some programming it will most likely suffice if you skim through
the following explanations to grasp how the shell handles variables.
A variable is just a name you give to a value. Consider the following Python snippet:

x = 6
y = 7
z = 6 * 7
print(z)
29This is a bit of a mess: There is a program called kill(1) which will be explained if you type “man

kill”. However, consider the following scenario: You have opened so many processes that you are
not allowed to start new ones and some of them are no longer reacting, so you have to terminate them
by sending them signals. However, kill(1) is a program and if you try to invoke it, this will be refused
as you’re not allowed to start any more processes. Therefore, there is a bash-builtin called kill which
does exactly the same, but as it is just a part of bash it does not need to start a whole new process and
will still be able to terminate the misbehaving ones. Thus, if you just type kill on the command-line
the bash-builtin will be used and not the program kill(1). This has the further advantage that you
can use job IDs instead of PIDs. To tell kill that you’re passing a job ID to it, prepend the number
with ‘%’, i.e. in the above example: kill %1.

73

There are three variables in this snippet, x, y and z. The first two are directly set to
a specific value while the last is set to the product of others and then printed to the
screen. You know this stuff also from school, where you worked a lot with variables.
However, a variable doesn’t have to be a number in programming – it can be set to

a string, a file descriptor, an instance of a class, etc.
In the context of the shell, variables are usually strings, e.g.:

$ myvar="Hello, World!"
$ echo $myvar
Hello, World!
$ x=6
$ y=7
$ z=$x*$y
$ echo -e "x == $x\ny == $y\nz == $z"
x == 6
y == 7
z == 6*7

There are several things to consider in this example:
• Variables in the shell are set by writing “name=value” which is little surprising.
There must not be any spaces between name, =, and value!

• To reference the value of a name, prepend a ‘$’ to the name.
• To print the content of a variable use the shell builtin echo or echo(1).
• The shell interprets variables as strings and doesn’t perform mathematical opera-
tions by default.30

And about the echo statement: The -e option tells echo to interpret certain backslash-
escapted characters, one of which is ‘\n’, the new line character.
One variable that has been with you this whole course is PS1. Not very recognizable,

is it? Quite the opposite, this is the variable in which your prompt is stored, i.e. the
“user@machine $” string that greets you on every line of input. Have a look at it:
$ echo $PS1
\[\e]0;\u@\h [\W]\a\]${debian_chroot:+($debian_chroot)}\u@\h:[\W]\$

Ok, this seems rather complicated. But the basics are easy! The following elements in
this string are useful to remenber:
\u: Your username.
\h: The hostname, i.e. the name of your computer.
\w: Your current working directory as absolute path.
30There is a way to set z to the product of x and y, but it’s rarely used so we won’t discuss it here.

74

\W: Only the last element of your current working directory, e.g. if you are in /home/me/unixcourse
this would be unixcourse.

You can do much, muchmore with your prompt, including setting colours, showing the
time, giving you various information about the directory you are in, etc. For now, try
something easy like:
$ OLDPS1=$PS1 # backup your old prompt
$ PS1="> "
> PS1="\u > "
me > PS1="\u@\h \w $ "
me@machine ~/unixcouse $ PS1=$OLDPS1
$

First, we stored the original value of PS1 in a new variable to make restoration easy.31
Then we set the prompt to different values and restored it at the end.
As a starting point to what else you can do with your prompt, have a look at the Arch

Linux wiki entry.
There is a lot more to variables in the shell (and different shells offer different possi-

bilities), but the above is sufficient for our purposes.

4.7.2 Your Environment

Variables in the shell are predominantly used to configure your environment or in shell
scripts which will be covered later. But what is your environment?
It is the context in which you execute commands. Above we raised the question how

the shell knows which programs to execute when you pass it a command and said there
is a variable for this. This variable is named “PATH”. Let’s have a look at it:
$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

You can see that this is a list of absolute paths to directories, separated by colons. If you
type a command, your shell looks in each of these locations whether there is a program
of this name and executes the first match. Let’s take ls as an example: First, we check
where ls is located:
$ which ls
/bin/ls

Ok, it’s in the /bin directory. Thus, if we type ls the shell does the following:
1. Look for “ls” in /usr/local/bin. Not found.
2. Look for “ls” in /usr/bin/. Not found.

31By the way, the shell will ignore everything you type after a ‘#’, so this can be used for comments.

75

https://wiki.archlinux.org/index.php/Bash/Prompt_customization
https://wiki.archlinux.org/index.php/Bash/Prompt_customization

3. Look for “ls” in /bin. Found!
4. Execute /bin/ls.

So far so good, but how can this be helpful to you? PATH is a variable and you’ve seen
above that you can set variables yourself. Thus, you can add and remove directories in
which you want your shell to look for executable commands. An easy example:
$ OLDPATH=$PATH
$ PATH=""
$ ls
bash: ls: No such file or directory
$ PATH=$OLDPATH
$ ls
contentdir file1 join2 rminteractive
dir1 file2 linefile sedfile
dir2 files.tgz lsfile sedfile.bak
dir3 grepfile myfirstarchive.tar sortfile

'dir with spaces' hasfileinit numericsort tablefile
echofile hugefile.gz onelinefile tar-dir
errorfile join1 renamedfile twostreams

Above we first stored the original value of PATH in another variable for easy recovery.
Then we set PATH to an empty string and try to execute ls. Little surprisingly this doesn’t
work, because now the shell has nowhere to look for executables. After restoring the
original value of PATH the call to ls works again.
Changing your search path comes in handy e.g. if you are writing your own programs

or scripts and store them in a directory in your home directory – adding this directory
to your search path will allow you to call your creations without typing their whole
paths.
But apart form your search path, what else is in your environment? To find it out,

use printenv(1):
$ printenv
SHELL=/bin/bash
XTERM_SHELL=/bin/bash
EDITOR=/usr/bin/vim
PWD=/home/me/unixcourse
LOGNAME=me
TERMINAL=xterm
HOME=/home/me
LANG=en_US.UTF-8
TERM=xterm
USER=me
VISUAL=/usr/bin/vim
DISPLAY=:0

76

PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

The ouput has been truncated to remove irrelevant/sensitive stuff. You can see that
things like the path to your shell executable, the language of your system, and your
username. Some of these variabels are of vital importance to some programs:
PWD: If you ever wondered, how pwd(1) finds out in which directory you currently are,

now you know the answer. It simply reads the PWD variable from your environ-
ment and prints it to the screen. Whenever you cd into some other directory, the
shell updates this variable so a new call to pwd will again give the correct result.

HOME: You already know that if you type cd with no arguments, you will land in your
home directory. The cd shell builtin knows where this is because it reads this
variables. Note that the tilde ‘~’ is also an alias for your home directory, i.e.

$ cd ~/unixcourse

will change to the directory unixcourse in your home directory.
SHELL: As has been mentioned several times, there are different shells with different

capabilities. Reading this variable, other programs can tell whether the shell you
use has certain kinds of features or not.

Changing Your Environment Persistently

All the changes we’ve done so far are only valid for the currently running shell. Just
set your PS1 variable to anything you want and then start a new shell:
$ echo \"$PS1\"
"$ "
$ PS1="\u@\h $ "
me@machine $ bash # this starts a new bash
$ echo \"$PS1\"
"$ "

However, this hints at something else: Somehow the shell must know to what value it
sets your PS1 variable initially.
This “somehow” are configuration files. For the bash shell there are two main con-

figuration files in your home directory: .bashrc and .bash_profile32. They serve
different purposes:
~/.bashrc: This is the startup file which the shell reads everytime it is called as an

interactive shell, i.e. for our purposes whenever you start a new shell by opening
a new terminal emulator or by executing the bash command.

32Traditionally this was just .profile. You may still find it on your system and everything is fine as long
as you don’t have both of them.

77

Things you set here are your PS1 variable or aliases.33

~/.bash_profile: This is your personal initialization file which is executed for login
shells, i.e. for our purposes this means it is read once when you login. Your PATH
variable is usually set here.

You can customize both of these files to your heart’s desire. These files are actually
shell scripts (which we will cover later), so you can do some scripting in there if you
want.

4.8 Shell Scripting Basics
Until now, we typed one command at a time, sometimes combining them with pipes,
but that was it. However, it is able to write script files which execute a sequence of
commands. We’ll start with a very basic script – just open a file with your favourite
editor and type in the following lines:
#! /usr/bin/env bash

echo "Hello, World!"

exit 0

Save it as e.g. script1.sh. Let’s analyse what each does:

#! /usr/bin/env bash This line defines the interpreter for the script, which pro-
gram should execute it. In our case, we want the bash
shell to run it. In many scripts you’ll see people writing
#! /bin/bash instead of the above. This is ok as long as
you use only systems where the bash is actually located in
/bin. If it is installed in e.g. /usr/bin (which is the case
in many BSDs) your script will fail. #! /usr/bin/env
bash, on the other hand, checks your PATH variable for the
location of the bash in your environment and executes it.
As /usr/bin/env is a standard location across different
kinds of UNIX-like operating systems, this syntax is more
portable and that’s why we prefer it.

echo "Hello, World!" Ok, you understand that one by now ;)
exit 0 Return an exit code of 0 which usually indicates successful

execution.

33An shell alias is a way to create a shortcut for a command including its arguments, e.g. if you type (or
put in your .bashrc) “alias ll="ls -l"”, you defined an alias called “ll” which is just ls with the
-l option included.

78

To execute a script in the current directory, you can’t just type its name. Why? Because
the current directory is (hopefully) not in your search path and therefore your shell
doesn’t look here for executables. Therefore, you have to prepend “./” to the script
name34. Let’s try it out:
$./script1.sh
bash: ./script1.sh: Permission denied

Huh, what happend? Take a closer look at the script:
$ ls -l script.sh
-rw-r--r-- 1 me me 51 Aug 26 20:12 ./script1.sh

Can you spot the problem? If not, don’t worry, we’ll explain it: In 4.1 we talked about
permissions. As you can see in the above output, there are no execute permissions on
the script. To add them, we use chmod(1) which was discussed in 4.2:
$ chmod u+x script1.sh # add execution permission for the user
$./script1.sh
Hello, World!

Our next example will be a script which takes arguments and prints them to the screen:
#! /usr/bin/env bash

echo "Hi, I am $(basename $0)"
echo "You passed $# arguments to me. They were:"
for args in $@; do

echo " $arg"
done

exit 0

Before we explain the details, let’s make it executable and run it:
$ chmod u+x script2.sh
$./script2.sh
Hi, I am script2.sh
You passed 0 arguments to me. They were:
$./script2.sh here are some arguments
Hi, I am script2.sh
You passed 4 arguments to me. They were:

here
are
some
arguments

34Remember that ‘.’ is the current directory, i.e. “./script1.sh” will be expanded to an absolute path.

79

And now, the lines you may not understand yet in detail:

echo "Hi, I am $(basename $0)" That’s a heavy weight! First, the $(...)
expression is a so called command substitution.
This means that the expression will be sub-
stituted by whatever the command inside the
parentheses printed to stdout. basename(1)
is a command which prints the last element
of a path, e.g. basename /this/is/a/path
will print “path”. Finally, $0 is the “zeroth”
argument you passed to the script, which is
set to the name by which you called, i.e. in
our case $0 will expand to “./script2.sh”.
Thus, if you go through this step by step,
first “basename $0” is expanded to “basename
./script2.sh” which prints “script2.sh”
which is printed by echo.

$# This is a special variable which contains the
number of arguments that were passed to a
script, excluding $0.

$@ This is a special variable which expands to all
the arguments passed to the script, separated
by whitespace.

And finally, we have a for-loop. This kind of loop repeats a certain number of times,
i.e. in the above example it is executed as many times as there are arguments to the
script. The basic syntax of a for-loop in shell scripts will be given below.
While our two example scripts didn’t do anything useful, scripting in general is very

powerful and enables you to work efficiently. Sysadmins especially love scripts to get
summaries of the system state from different tools. Unfortunately, there is no time in
this course to cover them, but if you start using the command line regularly, you’ll soon
find a lot of use cases for scripts.

4.8.1 Syntax of Common Constructs

This section provides you with a quick overview of the commonly used programming
constructs in shell scripting.

if-Statements

An if-statement executes some code based on whether a condition is true or false. It’s
basic syntax is:

80

if CONDITION; then
STATEMENT(S)

[elif CONDITION; then
STATEMENT(S)

]...
[else

STATEMENT(S)
]
fi

The elif and else blocks are optional, indicated by the brackets.

for-Loop

You’ve already seen the for-loop in action in our second script above; it repeats one or
more statements for a number of times. Syntax:
for VAR in LIST; do

STATEMENT(S)
done

For those who programmed in C-style languages: bash also supports the following
syntax:
for ((expr1 ; expr2; expr3)); do

STATEMENT(S)
done

while- and until-Loop

In contrast to a for-loop, a while-loop repeats something as long as a condition is true:
while CONDITION; do

STATEMENT(S)
done

The shell also offers an until-loop, which repeatedly executes some code until a condi-
tion is true:
until CONDITION; do

STATEMENT(S)
done

4.9 Installing Programs With and Without Rootly Powers
In general, there are two ways to install programs on a (GNU/)Linux system: Either
through a package manager or from source.

81

4.9.1 Package Management

(GNU/)Linux systems usually want you to install programs using a packet manage-
ment system. Today, you are most certainly familiar with this concept if you are using
Google Play on Android or Apple’s App Store on iOS. However, this concept of a cen-
tralized location from which you download and install everything was pioneered by
(GNU/)Linux distribution in the 1990ies. The good thing about such repositories is
that they are managed by knowledgable people who take care of updating packages in
the repositories and make sure that everything works together. Before package man-
agement was invented you had to do this all by yourself!
The utility for package management on Debian GNU/Linux and distros derived from

it (e.g. Ubuntu, Linux Mint) is apt(1), the “Advanced Package Tool.” apt doesn’t just
install packages, it also takes care of dependencies, i.e. if the package you want to
install needs another package to work properly, this other package will be installed by
apt as well which makes it very convenient to use.
apt also keeps track of all the files a package installs on the system which makes it

easy to cleanly remove everything if you decide to uninstall a package at a later point.
Additionally, apt is also used to update all the packages installed on your system.
The basic options for apt are:

install PACKAGE... Install one or more packages.
remove PACKAGE... Remove one or more packages, but leave their configuration files

on the system.
purge PACKAGE... Remove one or more packages and also delete configuration files.
update Download package information from all configured repositories. This doesn’t

install any updated packages, it just updates the information about which pack-
ages are available in which version.

upgrade Install all available updates for packages that are already installed on your
system. Usually, you first do apt update to get information about new packages
followed by apt upgrade to actually apply the updates.

list PATTERN... List all packages which match one of the given patterns and indicate
whether they are installed or not. Wild cards are supported.

show PATTERN... Similar to list, but shows a lot of additional information about
matching packages like who is the maintainer of the package, a description what
the package is, dependencies, and much more.

Note that installing and removing packages with a packet manager always requires root
privileges. To elevate your privileges use sudo(8), e.g.:
$ sudo apt update && sudo apt upgrade

82

The “&&” operator executes the second command only if the first one succeeds. You
will be prompted for your password35 and if you are a member of the sudo group (which
you should, if you followed the installation instructions carefully) your system will be
updated.

4.9.2 Installing Programs from Source

While package management is great, there are some situations in which you can’t use
it, e.g.

• You don’t have root privileges and your sysadmin doesn’t want to install the pro-
gram you need.

• The version in the distro’s repository is outdated. Many distros only allow well
tested version in their distros, which can introduce a significant delay until newer
versions are added.

• You want to install a program which is not available as a package. This is e.g.
often the case if you are a developer and want to install some cool new tool you
have written yourself.

In these situations, you have to grab a copy of the source code, compile it and then
install the executables to the right places on your system. While this may sound com-
plicated (and most certainly is in some situations), in most circumstances it is pretty
simple to do this:
1. Download the tar-Archive of the source code.
2. Extract it and cd into the new directory.
3. Read the INSTALL file and check if you have to pass any options/arguments to the

following commands.
4. Prepare the compilation by calling

$./configure

5. Compile by calling

$ make

6. (optional and only possible if you have root privileges) Install the executables
to the standard locations of the system like /usr/local/bin which are usually
included in users’ search paths:

35Nota bene: The shell doesn’t give any visual hints while you type your password, i.e. also no “*” for
each character. Just type in your password and press ENTER, it will work ;)

83

$ sudo make install

You can also combine the last three steps in one line:
$./configure && make && sudo make install

Et voilà, you compiled a program from source code and installed it on your system.
This approach enables you to install everything, but it has some important caveats:
• This method can’t handle dependencies, i.e. if you need another program, the
installation process will fail and you have to install the other program first.

• Unless you do it yourself, there is no easily accessible documentation about the
location(s) to which files were installed, i.e. removing stuff later can be really
tedious.

• You have to check the code for yourself as there are no maintainers who already
ensured that it will work on your system and is non-malicious.

84

5 Final Words
This 3-day workshop barely scratched the surface of (GNU/)Linux systems and the
power of the command line. For example, we didn’t do any networking stuff, we didn’t
do system administration, we didn’t mess with hardare or mounted and unmounted
disks, etc.
There is a lot to learn about the topics we covered in this introductory workshop and

we hope we could incite your interest and made you hungry for more. As mentioned
in the , there are lots of sources, online and offline to help you get more familiar with
the command line and the concepts behind it.
If you are looking for a resource that goes beyond this course but still starts with

the basics I (Dimitri Robl) can whole-heartedly recommend William Shott’s “The Linux
Command Line” about which you can find more information here. In its about 500
pages it covers all the basics of command line wizardry in a fun way. I started learning
the command line with it and loved every page :)

85

https://nostarch.com/tlcl2

	Installing a Virtual Machine
	Prerequisites
	Enable Virtualization
	Install Oracle VirtualBox
	Getting the Installation Image

	Installing a Virtual Machine Running Debian GNU/Linux

	UNIX, GNU, and Linux
	UNIX
	GNU
	Linux

	Basics
	Shells, Terminals, and Commands
	The Filesystem
	Help Utilities
	man
	info
	–help and -h
	help and type
	which and whereis
	whatis
	The Internet Is Your Friend

	The Command-Line
	Moving and Looking Around
	Working with Files
	Working with Content
	Looking at Content
	Creating Content and I/O redirection

	Archiving and Compression
	Archiving with tar
	Compression Utilities
	Combining Archiving and Compressing Data

	Textfiles, Pipes, Wildcards, and a Little Bit of Regex
	Of Heads and Tails
	Sorting Text and Using Pipes
	Wild Cards and Gentle Regexes
	Cutting and Joining
	Editors (a.k.a. Religions)

	Processes
	Process Control

	Variables and Your Environment
	Variables
	Your Environment

	Shell Scripting Basics
	Syntax of Common Constructs

	Installing Programs With and Without Rootly Powers
	Package Management
	Installing Programs from Source

	Final Words

