UNIX WORKSHOP

Dimitri Robl

wae A TRUE STORY: WEEKTWO WEEK Six [VeEk Twene |
EEKONE _ IT SAYS MY XORG DUE To AUTO - YOU HAVEN T ANSUERED
HEY, IT'S YOUR COUSIN | | IS BROKEN. \HAT's| | CONFIG ISSUES, TM | | YOUR PHONE IN DAY,
T GoT A NEw COMRUTER AN "XORG"? \JHERE. LEAVING URUNTU CANT SiEEP
BUT DONT WANT WINDOws | | cAN T Look THaTop| | FOR DEBWAN. (MUsT CompiLE
INSTALL "LINUX"? \\} L HM, (UH
S | | | B
~ GENTOD.
sue. 7 ke | ARGl N Fa@y
) prdem I

PARENTS: TALK TD YOUR
KIDS ABOUT LINUX...
BEFORE. SOMEBODY ELsE COES.
CC BY-NC 2.5 by Rendall Monroe

https://creativecommons.org/licenses/by-nc/2.5/legalcode

This work is licensed under the Creative Commons
Attribution-Non-Commercial 4.0 International License

Version 0.1 September 23, 2018

https://creativecommons.org/licenses/by-nc/2.5/legalcode
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Welcome to this three-day workshop which will teach you the basics of UNIX, (GNU/)Linux,
and the command line! There is a lot to learn ahead of us, but first, you need to set up
your working environment.

Contents

1

Installing a Virtual Machine

1.1 PrerequiSites v v v v v i i e e e e e e e e e e e e e e e e
1.1.1 Enable Virtualization
1.1.2 Install Oracle VirtualBox
1.1.3 Getting the InstallationImage

1.2 Installing a Virtual Machine Running Debian GNU/Linux

UNIX, GNU, and Linux

2.1 UNIX . . . e e e e e e e e e e e e e e e
2.2 GNU . . . e e e e e e e e e e e e e
2.3 LinUX e e e e e e e e e e e e e e e e e

Basics

3.1 Shells, Terminals, and Commands

3.2 TheFilesystem

3.3 Help Utilities i v i it e e e e e e e e e e
3.3 1 man. . .o e e e e e e e e e e e e e e e e e e
3.3.2 Anfo v o e
3.3.3 helpand type v v v v i i i e e e e e e e e e e e
3.34 --helpand-ht eunneeeo.
3.3.5 whatisandwhereis i i i i i
3.3.6 TheInternetIs YourFriend

The Command-Line

4.1 Moving and Looking Around

4.2 Workingwith Files

4.3 WorkingwithContent 'uuueeeen..
4.3.1 LookingatContent.o eeununeene..
4.3.2 Creating Content and I/0O redirection

4.4 Archiving and Compression v v v v v vttt e
4.4.1 Archivingwithtar.
4.4.2 Compression Utilities
4.4.3 Combining Archiving and Compressing Data

4.5 Textfiles, Pipes, Wildcards, and a Little Bitof Regex
4.5.1 OfHeadsandTails
4.5.2 Sorting Text and Using Pipes
4.5.3 Wild Cards and Gentle Regexes

4.5.4 Cuttingand Joining
4.5.5 Editors (a.k.a. Religions)
4.6 Processes v v it it e e e e e e e e

1 Installing a Virtual Machine

In order to make life easier for you, it won’t be necessary that you install a Linux distri-
bution or distro! on your harddrive. Instead, we will guide you through the installation
of a virtual machine? running Debian GNU/Linux. If you already have a working in-
stallation of any Linux distro (either physical or virtual) you can skip this step.

1.1 Prerequisites

In order to use a virtual machine (VM), your physical machine should have at least two
cores, 4GiB of main memory (i.e. RAM) and there should be at least 20GB free space
on your disk. In this case more is always good.

1.1.1 Enable Virtualization

The first thing to check is whether you CPU supports virtualization, and has it activated.
Follow these steps:

1. Boot your computer.
2. Depending on your motherboard press ESC, DEL, ENTER, F2, F10, or F12.
3. Look for an option which says "Advanced” or "CPU settings”.

4. Depending on whether you use an Intel or an AMD CPU you will have to enable
Intel Virtualization Technology, Intel VT, VT-x, AMD-V, AMD Virtualization or
similar.

5. Check if this option is enabled and if not, enable it.

6. Save changes and Exit.

1.1.2 Install Oracle VirtualBox
Now you have to install the software to run virtual machines:

1. Download the installer from https://www.virtualbox.org/. It runs on Windows,
0OS X, Linux and Solaris hosts.

2. Start the installer and follow the instructions.

1Youw’ll learn what exactly that means later in the course.
2If you are unfamiliar with this concept you can read the Wikipedia entry about it.

https://www.virtualbox.org/
https://en.wikipedia.org/wiki/Virtual_Machine

1.1.3 Getting the Installation Image

The final thing to obtain before the installation can begin is an image to install. Just
download the netinst Debian image and store it somewhere you remember(!), you’ll
need it afterwards.

In case you don’t have an x86_64 architecture °, installation files for other archite-
tures are available at https://www.debian.org/distrib/netinst. However, it is rather
unlikely that you have a different architecture on a general purpose computer, unless
you are still on a machine running 32-bit x86* or own one manufactured by Apple
before 2006 which has a PowerPC CPU.

Now everything is ready to proceed to the installation!

1.2 Installing a Virtual Machine Running Debian GNU/Linux

To install a VM running Debian GNU/Linux follow the instructions below:
1. Open VirtualBox.

2. Click on the “New” button in the upper left corner.

File Machine Help

@ > - i -

New Machine Tools Global Tools
Welcome to VirtualBox!
The left part of this window lists all virtual machines and virtual
machine groups on your computer. The list is empty now
because you haven't created any virtual machines yet.

In order to create a new virtual machine, press the New button
in the main tool bar located at the top of the window.

You can press the F1 key to get instant help, or visit
www.virtualbox.org for more information and latest news,

3. Enter a name for your VM, and if this is not automatically done select Type: —
Linux, and Version: — Debian (64-bit).> Press “Next”.

3To make things less confusing, this architecture is also called x64, AMD64, and Intel 64.
*Ak.a. IA-32, i386.
5If you use a different rchitecture than x86_64 you have to specify this here as well.

https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/debian-9.5.0-amd64-netinst.iso
https://www.debian.org/distrib/netinst

Name and operating system

Please choose a descriptive name for the new virtual
machine and select the type of operating system you
intend to install on it, The name you choose will be
used throughout VirtualBox to identify this machine,

Name; |debvm

. |
Type: | Linux Ml D)

Wersion: | Debian (64-bit) -

Expert Mode Next > Cancel

4. Select the amount of memory the VM will have. The best value here depends on
what you want to do with the VM and how much RAM your physical machine
has. The default value of 1024Mib (i.e. 1GiB) is sufficient for our purposes, but

you can use more if you want and less if you are very low on physical RAM (i.e.
2GiB or less).

Memory size

Select the amount of memory (RAM) in megabytes to
be allocated to the virtual machine,

The recommended memory size is 1024 MB.

1024 |2 MB
4 MB 12288 MB

< Back Next = Cancel

5. Choose how much disk space to give to your VM. This includes several steps:
a) Select “Create a virtual hard disk now” and press “Create”.

Hard disk

If you wish you can add a virtual hard disk to the new
machine. You can either create a new hard disk file
or select one from the list or from another location
using the folder icon,

If you need & more complex storage set-up you can

skip this step and make the changes to the machine

settings once the machine is created,

The recommended size of the hard disk is 8.00 GB.
Do not add a virtual hard disk

e Create avirtual hard disk now

Use an existing virtual hard disk file

< Back Create Cancel

b) Leave “VDI (VirtualBox Disk image)” selected and press “Next”.

Hard disk file type

Please choose the type of file that you would like to use for the
new virtual hard disk. If you do not need to use it with other
virtualization software you can leave this setting unchanged.
e VDI (VirtualBox Disk Image)

WHD (wirtual Hard Disk)

WMDK (Virtual Machine Disk)

Expert Mode Next = Cancel

¢) Again go with the default “Dynamically allocated” and and press “Next”.

Storage on physical hard disk

Please choose whether the new virtual hard disk file should grow
as it is used (dynamically allocated) or if it should be created at
its maximum size (fixed size),

A dynamically allocated hard disk file will only use space on
your physical hard disk as it fills up (up to a maximum fixed

size), although it will net shrink again automatically when space
on it is freed.

A fixed size hard disk file may take longer to create on some
systems but is often faster to use.

e Dynamically allocated

Fixed size

< Back Next = Cancel

d) You can now change name and location of the file that will be the VM’s
harddisk. If this sounds confusing: What the VM will believe is its disk will
actually be nothing more than a file on the underlying operating system (OS)
you run the VM on.

A reasonable size also depends on your needs and the space you have. If
you plan to really do anything with your VM, we recommend a minimum of

20GB, but if you just need it for this workshop the standard size of 8GB will
suffice.

After you are done, click on “Create”.

File location and size

Please type the name of the new virtual hard disk file into the
box below or click on the folder icon to select a different folder
to create the file in.

3

Select the size of the virtual hard disk in megabytes. This size is
the limit on the ameunt of file data that a virtual machine will be
able to store on the hard disk.

8.00 GB

4.00 MB 2.00TB

=< Back Create Cancel

6. Now you’re back to the main screen, which should look something like this:

File Machine Help

My
* @& U . > o i .
Machine Tools Global Tools

New Settings Start
B~ debvm Welcome to VirtualBox!

fJ @ Powered Off
The left part of this window lists all virtual machines and virtual an

machine groups on your computer.

s
The right part of this window represents a set of tools which are
currently opened (or can be opened) for the currently chosen
machine. For a list of currently available tools check the
corresponding menu at the right side of the main tool bar
located at the top of the window. This list will be extended with
new tools in future releases.

You can press the F1 key to get instant help, or visit
www.virtualbox org for more information and latest news.

Details
Tool to observe virtual machine (WM) details. Reflects groups of properties for the
currently chosen WM and allows basic operations on certain properties (like the =

machine storage devices).

Snapshots

Tool to control virtual machine (VM) snapshots. Reflects snapshots created for the
currently selected WM and allows snapshot operations like create, remove, restore @%
(make current) and observe their properties. Allows to edit snapshot attributes like

name and description.

Select you newly created VM and press “Start”.

7. A pop-up should appear which asks you to select a start-up disk. Click on the
folder icon and select the Debian GNU/Linux ISO-file you downloaded earlier
(and whose download location you should remember ;)).

Please select a virtual optical disk file or a
physical optical drive containing a disk to start
your new virtual machine from.

The disk should be suitable for starting a
computer from and should contain the
operating system you wish to install on the
virtual machine if you want to do that now. The
disk will be ejected from the virtual drive
automatically next time you switch the virtual
machine off, but you can also do this yourself if
needed using the Devices menu,

debian-9.5.0-amd&4-netinst.iso (291.00 « | [A

Start Cancel

Press the “Start” button.

That’s it, a new window should pop up and the installation of your new virtual OS can
begin. Select “Graphical Install” and follow the on-screen instructions. There are some
things you should be careful about:

1. The selection of your locale (i.e. the language the system will use) and your key-
board layout — e.g. if you want to use an English system, but a German keyboard
you have to tell the installer.

2. When asked to enter the root password, leave it blank to disable the root account
and use sudo instead. We'll discuss the details later.

Set up users and passwords

You need to set a password for 'root', the system administrative account. A malicious or unqualified user
with root access can have disastrous results, so you should take care to choose a root password that is
not easy to guess. It should not be a word found in dictionaries, or a word that could be easily
associated with you.

A good password will contain a mixture of letters, numbers and punctuation and should be changed at
regular intervals.

The root user should not have an empty password. If you leave this empty, the root account will be
disabled and the system's initial user account will be given the power to become root using the "sudo”
command.

Note that you will not be able to see the password as you type it.
Root password:
(i

(] Show Password in Clear

Please enter the same root password again to verify that you have typed it correctly.
Re-enter password to verify:

[

[J Show Password in Clear

Screenshot Go Back

3. If you don’t know about disk partitioning leave the defaults intact. However, in
case you install Debian GNU/Linux on real hardware on a portable device (e.g. a

10

laptop) and not as a VM, we strongly recommend using the “Guided - use entire
disk and set up encrypted LVM” option. This will encrypt your harddrive which
means that every time your PC or laptop starts you will have to enter a passphrase
to decrypt the disk before the OS even boots. This has the huge advantage that
in case your device is stolen, it will be almost impossible to access your data
if the thief does not your password/passphrase — and no one should ever know
that! Make sure to choose a strong password, where “strong” means “as long as
possible”. You don’t necessarily have to care about special characters, length is
always better. See here.

The only downside to this is the fact that if you forget or lose your password/passphrase
you yourself also won’t be able to access your data. This is one of the few cases in
which it may be a good idea to write down your password/passphrase on a piece

of paper and store it in some secure place.

Also, don’t worry about the warnings when it says “Write changes to disk” if you
set up a VM. The VM ‘believes’ it has a whole disk to write on and is not aware
that it is actually just a file in the underlying OS. If you followed the instructions
so far, it is not possible to destroy your real hard disk by installing the VM.

4. When you come to select mirror to download the packages, double-click on “Aus-
tria” and then select any mirror. As it says in the description ftp.at.debian.org
is usually a good choice.

Configure the package manager

The goal is to find a mirror of the Debian archive that is close to you on the network -- be aware that
nearby countries, or even your own, may not be the best choice.

Debian archive mirror country:
enter information manually
Argentina

Armenia

Australia

Bangladesh

Belarus

Belgium

Brazil

Bulgaria

Canada

Chile

China

Colombia

Costa Rica

Croatia
Screenshot Go Back 1 Continue

11

https://www.xkcd.com/936/

- debian 9

Configure the package manager

Please select a Debian archive mirror. You should use a mirror in your country or region if you do not
know which mirror has the best Internet connection to you.

Usually, ftp.<your country code=.debian.org is a good choice.
Debian archive mirror:

debian.lagis.at

ftp.at.debian.org

debian.sil.at

deb.debian.org
debian-archive.trafficmanager.net
debian.anexia.at

debian.inode. at

ftp.tu-graz.ac.at

debian.mur.at

gd.tuwien.ac.at

Screenshot [Go Back H Continue]

5. Once you come to the screen “Software selection” we recommend selecting “Xfce”
or “LXDE” if the VM is on low memory (< 2GiB), as these are very light weight
GUIs. Otherwise you can stick with the default “Debian desktop environment”.

debian 9

Software selection

At the moment, only the core of the system is installed. To tune the system to your needs, you can
choose to install one or more of the following predefined collections of software.

Choose software to install:

[] Debian desktop environment

[] ... GNOME
... Xfce

[... KDE

[] ... Cinnamon
[... MATE

[... LXDE

[] web server
print server
[] SSH server

standard system utilities

B GRS 20 @& @ = Right ctd

If you run into any problems, use your favorite search engine and look for something
like “Debian installation tutorial”. Most likely you’ll find written instructions as well
as videos on how to do it.

12

2 UNIX, GNU, and Linux

This section seeks to clarify terms you are very likely to encounter pretty soon when
working with any (GNU/)Linux distro. Be prepared that people are very picky about
words, and don’t get discouraged in case you meet a particularly nasty partisan of one
of these wordisms.

2.1 UNIX

In the beginning there was ... the desire to play games! Yes, that’s it! In the 1960ies two
MIT students called Dennis Ritchie and Ken Thompson wanted to play the game ”Space
Travel” on their new, but underpowered minicomputer! PDP-7. To achieve their goal,
they had to tweak the machine a bit and as they were researching operating systems
(OS) at the time anyway, they ended up writing a whole new OS for the PDP-7 which
came to be named UNIX.

UNIX, based on the even older Multics, introduced a lot of new concepts into OS-
design, many of which are still in use today. UNIX was developed by Bell Labs which
where prohibited from selling it under US-law, but in 1983 this decree was lifted and
AT&T, the owner of Bell Labs promply tried to turn UNIX into a product, as it was
already widely used among computer science students and companies they worked for.
However, by this time there were already multiple versions of UNIX around, and one
of the most important of them was developed by researchers in Berkeley; the Berkeley
System Distribution (BSD).

BSD was sued by AT&T for copyright infringement despite the fact that large parts
of AT&T’s own UNIX implementation was based on code from Berkeley. After a long
legal battle, BSD won its freedom and the base of modern FreeBSD, OpenBSD, NetBSD,
etc. was laid out.

UNIX finally lost the battle for the PC against Apple and Microsoft, which was very
likely at least in parts based on the law suits.

However, in the server market and in technical and scientific circles, UNIX and its
derivatives continued to be state of the art and remain so today.

2.2 GNU

GNU (GNU'’s Not Unix) was founded in 1983 by Richard M. Stallman after he was fed
up with the closed source philosophy of UNIX. He wanted to create an OS that is “free

1”Mini” here indicates that it didn’t fill a whole room.

13

https://en.wikipedia.org/wiki/Multics

as in freedom”, meaning it adheres to the four principles of free software, which state
that users’ have to be

0. able to run the program as they wish, for any purpose.

1. able to study how the program works and can change it according to their wishes.
2. able to redistribute copies to others, either free or for a fee.

3. able to distribute modified versions to others, again either for free or for a fee.

Many tools necessary for a complete OS were created by the GNU project, including
gcc (GNU C Compiler), g++ (GNU C+ + Compiler), gdb (GNU Debugger), a shell, and
others.

However, one essential part was incomplete: A working kernel. The kernel is the part
of the OS which interacts directly with the hardware, so without a kernel, an OS can’t
run. Thus, the GNU tools were used on a number of UNIX systems, but a stand-alone
OS was still wanting.

This changed when in 1991 a Finnish computer science student by the name of Linus
Torvalds released a kernel he (eventually) called Linux.

2.3 Linux

Linus Torvalds originally released the Linux kernel under a license he created himself,
but in 1992 he re-licensed it under the GPLv2 (General Public License, version 2) which
is a license of the GNU project.

Technology-enthusiasts and academia quickly started using Linux as their kernel and
as soon as it was GPL-ed there existed a full GNU OS with a working kernel. This is why
you may read/hear the term GNU/Linux. Be careful here, some people are very picky
about using Linux only when referring to the kernel and GNU/Linux when refering to
a distro.

Linux’ open source nature made it possible that its development proceeded very
quickly with thousands of people contributing code and time. The current major re-
lease of Linux is version 4, the original 4.0 kernel was released in 2015. While Linux is
often hailed as the example of a successful open source project with loads of people sac-
rificing their spare time to make the Linux kernel better, today this is obsolete in large
parts. For the kernel releases between 4.8-4.13, 87.7% to 91.8% of the changes have
been done by people who are paid for this by various companies.? This is not necessar-
ily a bad thing, it just shows that the IT-industry heavily relies on Linux and therefore
actively develops it and also that Linux today is very far from being a hobbyists’ project
but a mature OS kernel developed mostly by professionals.

2See here.

14

https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/

3 Basics

This section will introduce important concepts and words you’ll have to work with,
show you how to help yourself on a (GNU/)Linux system in case you get stuck and
explain the filesystem.

To follow along, please download the training directory at

https://ct.cs.univie.ac.at/teaching/unixlinux-einfuehrungskurs/unixcourse.tgz

On the command line you can type (or just copy-paste — which can be done by just
selecting text with your mouse to copy it and paste it by pressing the middle mouse but-
ton on most modern GUIs on (GNU/)Linux) the following to get the archive containing
the folder:

wget https://ct.cs.univie.ac.at/teaching/unixlinux-einfuehrungskurs/unixcourse.tgz
tar -xvzf unixcourse.tgz

3.1 Shells, Terminals, and Commands

In the last chapter you’ve seen the concept of the kernel, the part of the OS which talks
to the hardware. If you want to communicate with the kernel you need something, that
wraps around it — a shell, for example.

Essentially, a shell is a user interface which allows you to access the services provided
by the OS. You are most likely familiar with a graphical user interface (GUI) which
allows you to access some services of the OS using a mouse and icons. A shell, on the
other hand, requires text as input by providing you with a command line. While the GUI
is often part of the OS you buy, i.e. you can’t easily change the program that is your
GUI if you use Microsoft Windows or Apple’s OS X, a shell on a (GNU/)Linux system
is just a program and you can choose from a wide variety of options. The shell we are
going to work with here is the GNU bash (Bourne Again SHell), which is based on an
older shell written by Stephen Bourne in 1979 and is obviously also a wordplay with
the verb ‘born’. We chose this one because it is currently the standard shell on all major
(GNU/)Linux distros, but do play around with others if you like to.

The stuff you enter on the command line to your shell are commands and they work
the same way as clicking an icon with your mouse does, e.g. you can either double-
click on the Firefox icon, or just type the word “firefox” on the command line, followed
by ENTER. Both actions will start a new instance of the Firefox webbrowser (if it is in-
stalled). One thing to keep in mind in the following sections is that most commands
are actually stand-alone programs, even though they write their output to the terminal
screen, while only a few of them are so-called shell builtins, i.e. keywords the shell
itself understands and works on without starting a new program. This will be of spe-

15

https://ct.cs.univie.ac.at/teaching/unixlinux-einfuehrungskurs/unixcourse.tgz
https://www.gnu.org/software/bash/https://www.gnu.org/software/bash/

cial importance in 3.3 where we talk about utilities that provide documentation for
commands.
Many commands can take arguments and options. Their basic syntax is usually:

command [OPTION]... [ARGUMENT]...

The brackets around OPTION and ARGUMENT indicate that they are optional and the dots
tell you that the preceding entity can be used multiple times, i.e. the line reads approxi-
mately as “Use command by typing command, possibly followed by one or more option(s),
possibly followed by one or more argument(s).” Arguments tell the command e.g. on
which file to operate, whereas options tell it what to do with the arguments. To sepa-
rate these things, you have to put a space after the command, after each argument, and
after each (group) of options.

Options come in two flavors: Short and long ones. Short options are usually indicated
by a single, non-separated, preceding dash ‘-’, while long options can be recognized by
two non-separated preceding dashes ‘--’. A very simple example would be

$ firefox --new-window https://www.univie.ac.at

which, little surprisingly opens the homepage of the University of Vienna in a new
window of the Firefox webbrowser.

In most cases options for a single dash consist of a single letter, while options pre-
ceeded by two dashes are words or phrases, e.g. let’s say you use the 1s program (to
list directories and/or files) which has the options -1, -a, and --human-readable and
want it to process argument arg. To do so, you could type:

$ 1s -a -1 --human-readable unixcourse

contentdir file3 onelinefile
diril filetodelete renamedfile
dir2 grepfile rmdirectory
dir3 hugefile rminteractive
'dir with spaces' joinl sedfile
errorfile join2 sedfile.bak
filel linefile sortfile
file2 numericsort tablefile

One thing to remember is that it is possible to combine short options behind a single
dash, i.e. the following would be equivalent to the above:

$ 1s -al —-human-readable unixcourse

contentdir file3 onelinefile
diri filetodelete renamedfile
dir2 grepfile rmdirectory
dir3 hugefile rminteractive
'dir with spaces' joinl sedfile
errorfile join2 sedfile.bak
filel linefile sortfile
file2 numericsort tablefile

16

Long options cannot be combined, so you have to type each of them in full. Many
programs have short and long options for the same operations and it’s just a question
of taste which one you use. A good approach is to start using long options because it is
easier to remember what they do and start memorizing the short options for operations
you use a lot.

But why bother to learn the names of programs if you can just click on an icon?
Surely, that’s much more intuitive and simple! Well, it depends. Imagine you com-
monly use about 50 programs, many of which interact with each other — a screen with
50 icons for programs seems rather overwhelming, don’t you think? And how about
moving stuff from one window to the other all the time — annoying, I'd say. Or opening
the same 7 programs one after the other, hundreds of times and copying data from one
to the other? Convenience is clearly not the word for this.

These are some of the tasks that can be solved easily on the command line. Most
command line utilities follow the UNIX philosophy that each program should solve a
single problem and solve it well. By combining the capabilities of many programs you
get a very flexible toolset to solve your problem at hand. Make the easy things easy,
and the hard things possible!

Figure 3.1: A DEC VT100 terminal. CC BY-SA ClickRick

Finally, a terminal is actually a piece of hardware (see 3.1), which can take input and
display output. In this course and most likely in your whole life, you’ll be confronted
with terminal emulators, i.e. software which behaves like a terminal, like the on you
see in 3.2.

When you open a terminal emulator your shell will be started and will provide you
with a prompt, which usually looks a bit like

user@machine ~$

where user is your username, machine is the name of your computer and ~ is a short-
hand for your home directory (see below for an explanation).! All your shell does now,
is to wait for you to issue a command — let’s do it the favor: type some random stuff
and press ENTER. It should look something like this:

$ ajsdggasd

'From now on, we will abbreviate your prompt as just ‘§’.

17

https://en.wikipedia.org/wiki/User:ClickRick?rdfrom=commons:User:ClickRick

@ Terminal - usrl@debsi: ~ FIE |

File Edit View Terminal Tabs Help
usrl@debsi:-$

Figure 3.2: XFCE’s terminal emulator

bash: ajsdggasd: command not found

$

Little surprisingly, this gibberish does not constitute a command. But fear not, we shall
use existing commands starting in the next section!

3.2 The Filesystem

In order to use the filesystem efficiently it is essential to understand its basic structure
and this is what this section wants to teach you.

The filesystem is software which manages how your files and directories are stored
on you disk/pendrive/CD/etc. Usually there are at least three kinds of entities in a
filesystem:

Files Some kind of data, possibly in a special format (e.g. PDF).
Directories These are places in which files are stored.

Links Links are references to either a file or a directory, i.e. they don’t contain data,
but just point to another place in the filesystem.

Filesystems in any UNIX system are usually structured as rooted trees.? The root of the
filesystem is designated by the slash ‘ /’.
As you are logged in and opened a terminal already (if not, do so now), you can type

For the mathematically interested: A rooted tree is an acyclic undirected graph in which one vertex has
been designated the root.

18

$ pwd
/home/me

Of course, you'll get a slightly different output, but there are two important things here:

1. pwd is our first real command! It stands for ‘print working directory’ which prints
you current working directory, i.e. tells you where in the filesystem you are.

2. The output, /home/me tells you, that you are in a directory me which is in a direc-
tory called home, which is in the root directory /.

Okay, now that you know where you are, you may want to know which files® are in
this directory — you can list them using

$ 1s
Documents Downloads Pictures Private

Again your output will differ slightly. So now, you used the program 1s to show you
the contents of the directory you are in. This is 1s’ standard behavior: If you don’t
provide any arguments it will display the content of you current working directory.

However, you can tell 1s which directory it should list by providing a path as an
argument. To show the contents of the root directory, type:

$ 1s /

bin boot dev etc 1lib media mnt opt run sbin srv tmp usr var

The output provided here shows everything that is required in the root directory ac-
cording to the Filesystem Hierarchy Standard (FHS), a document which defines what
has to be in the root directory of any (GNU/)Linux distro.* But as it only defines the
minimum, distros are free to add other things and you’ll most likely also find at least
home, proc, and sys in your root directory.

Now there is one more concept you have to understand regarding the filesystem:
absolute and relative paths. In a rooted tree you can specify any point in the tree by
starting at the root and listing every step on the way. This is what pwd does: Above it
said that I was in /home/me, telling me my exact position in the filesystem in an absolute
manner; therefore paths starting with the root directory are called absolute paths.

Unfortunately, absolute paths can be very inconvenient and long. Remember that
we said 1s can be provided with a path to list the contents of any directory in the
filesystem, not just the one you are currently in and that in the above example the
current directory contained Documents, Downloads, Pictures, and Private. Imagine
you have a subdirectory in Documents which is called university. To list it, you could

type

$ 1s /home/me/Documents/university

3Here ‘files’ denotes data, directories, and links as it is the most generic concept.
A short version of this can be found by typing man 7 hier.

19

http://refspecs.linuxfoundation.org/fhs.shtml

An awful lot to type I'd say! To remedy this situation you can provide a path relative to
your current working directory, i.e. a relative path. pwd told us that our current working
directory is /home/me, so the relative path to university is just Documents/university
without a leading ‘/’. Every path starting with a slash will be interpreted as an absolute
path, while relative paths just start with the name of the next directory you hop into
from your current directory.

That’s it for filesystem theory, now we’ll enable you to help yourself on a (GNU/)Linux
system.

3.3 Help Utilities

Every (GNU/)Linux system comes with a lot of built-in documentation installed by
default and of course the Internet hosts millions of HOW-TOs, tutorials, etc. We’re
going to focus on the offline documentation, but also provide some hints were you
usually get reliable information online.

This section can be treated as a reference — reading it now in its entirety may cause
you a bit of a headache as you may not be familiar enough with commands, options
and arguments right now. For the beginning it will suffice if you skim through this
section to get a basic idea about which facilities exist.

3.3.1 man

man, which is a shorthand for “manual page” is the traditional UNIX documentation
and knowing how to use it will help you not only on (GNU/)Linux, but also on any
other UNIX you’ll encounter like the various BSDs. In case you ask someone who is in a
hurry about a program and the only response is “RTFM”, meaning “Read The Fucking®
Manual”, this program is usually what they want you to use.

If you want to access the manual page of the 1s program, all you have to do is to

type:
$ man 1s

After this the man page for 1s should appear. To scroll down press SPACE and to exit
press Q.
We won’t go into a lot of details here because your first task now is to type

$ man man

This will fire up the man page of man. Read it to learn how to use this program efficiently
and make sure to read the “EXAMPLES” section!

The main things you should remember from this is how to move within the man
pages, how to exit them, what sections are and how you can tell the program to only
return entries from certain sections. Useful options you may want to remember are

50r, “Fine”, for the very pure.

20

-k | --apropos List the programs whose name or short description match the key-
word you searched for. Note that this is the same thing the apropos program
does.®

-a | --all Show all man pages from all sections which match the keyword you searched
for.

If you read through man’s man page you’ll understand what these options do ;)

3.3.2 info

While man is available on any UNIX system, the info pages were invented by the GNU
project and are therefore not necessarily available. However, all widely used (GNU/)Linux
distros have them installed by default.

To get the info page of 1s type

$ info 1s

You can again use SPACE to scroll forward and Q to get out of info.
Your next task is now to read

$ info info

As info is a bit more sophisticated than man, offering links, footnotes, menus, and
other references it is essential to read this. Furthermore, info has a lot more keyboard
shortcuts you can use, all of which are documented in its info page.

The difference between man pages and info pages is not a clearcut one. As a rule of
thumb, man pages are often more concise and only useful if you already know what a
program does in general, but just want to check available options, i.e. they are often
very technical and offer few explanations.

The info pages, on the other hand, are often much more verbose, have sections for
different kinds of options (while the man pages just list them one after the other) and
at least try to be a bit more accessible to complete beginners.

Just compare some man pages and info pages for the same program, e.g. man 1s vs.
info 1s to see the differences and get a feeling for them.

Note also, that all documentation is written by humans and some are more capable
of explaining how stuff works than others. For this reason the quality of man pages and
info pages can vary greatly from program to program. A good example can be found
in this xkcd comic.

3.3.3 help and type

In 3.1 we mentioned that not every command you type is a full program, but some are
just shell builtins. These are keywords understood by your shell. You can compare this
with your GUI: Most icons you click on will start a new program, but some things are

5You guessed it: Use man apropos to find out more.

21

https://xkcd.com/1692/

done by the GUI itself, e.g. if you click on the Windows button, it will display a list of
programs you can start, but this list is just part of the GUL

For these shell builtins no man pages or info pages exist. A command you’ll use very
often is cd (“change directory”) which enables you to change your current working
directory. But if you try to type

$ man cd

you’ll get a man page titled “BASH_BUILTINS(1)” which will most likely be very con-
fusing. To get help specifically for cd (or any other shell builtin for that matter) just

type
$ help cd

and the help will be displayed on the terminal.

But, you may ask yourself, how am I supposed to know what is a program and what
is a shell builtin?! Don’t despair! This is where the type shell builtin comes into play. If
you tried to access the man and/or info pages of a command and didn’t get a satisfying
result, try

$ type COMMAND_NAME

e.g.

$ type cd
cd is a shell builtin

And voila, now you can be sure.

3.3.4 --help and -h

Sometimes you are just not sure about what was the right option to get what you want
or you only forgot the correct spelling of the option. In these cases you may not want
to read through the whole man or info page and most programs make this possible by
providing a --help or -h option. So, typing COMMAND --help or COMMAND -h will in
most cases print a short description of the command and its most common options to
the screen.

Just try it out to see for yourself.

3.3.5 whatis and whereis

Many programs are continously developed and change from one release to another;
functionality may be added, reduced, removed, deprecated, etc. And at some points
you may not know whether you want the old or the new version. One way to solve
this is to simply install both, use them and then decide which one you like more. On
a GUI this may be indicated by two different icons for the different versions, but how
can you tell the difference on the command line?

22

This is where the which and whereis utilities come in handy.

which tells you where in the filesystem the executable you are going to call is located
and if you have installed two versions each of them will reside in a different place.
Thus, if you type

$ which pwd
/bin/pwd

which tells you that if you call the pwd program, it will use the one in the /bin directory.
So, in case you have a second version of pwd installed, which resides in /usr/local/bin,
you’ll have to use the absolute path to call it.

But sometimes you won’t know if there are different versions of the same program on
your machine, e.g. when you start working in a new place with your machine already
set up for you. To find out your possibilities try

$ whereis COMMAND

which will show you where versions of COMMAND are installed, where their man pages
are located and if the source code of the command is stored in a standard location on
the system.

Attention: The following explanation will most likely make no sense at all if you
haven’t read about variables in 4.7. The actual difference between whatis and whereis
is that the former looks through your PATH variable and returns the first executable it
finds which actually is the one your shell would execute while the latter scans through
your whole PATH as well as MANPATH plus some standard locations commonly used for
programs on any (GNU/)Linux system, and returns everything it finds there, separated
into executables, source files, and man pages.

3.3.6 The Internet Is Your Friend

If you have to do something real quick you may find yourself in a situation where
you don’t want to deal with man pages or info pages, but would prefer a ready-made
command with all options you want already set. As it is very likely that other persons
have had the problem at hand before you and many people post everything they achieve
online, chances are that you can find the command of your dreams posted in some
online forum, ready to be copy-pasted into your terminal emulator.

As you might expect, there are a myriad different sources where you can find infor-
mation, but we will only deal with very few of them which offer reliable information
in most cases.

Distros’ Websites

Each distro has its website and often Wikis attached to them. Many have a lot of useful
information, but keep in mind that these are distro-specific. It is also important to know
how your distro is organized; in the case of Debian, you are faced with a community
project where the whole content is provided by people spending their spare time on

23

providing information to others, but no one is responsible for doing so. This often
leads to very helpful replies to questions, targeted at total beginners, but as no one is
responsible for updating this content, sometimes you find very outdated information.
Red Hat Enterprise Linux, on the other hand, is a distro aimed at corporations, providing
a lot of information. However, as their material is intended for IT-professionals, you
won’t find a lot of explanation in many cases as they assume you already know what
you are doing/want to do and just show you how you can do it with the tools Red Hat
provides.

Thus, do a bit of research about each distro before using their documentation and
how-tos.

Debian: Information about Debian can be found at:
* https://www.debian.org
* https://wiki.debian.org/

* https://debian-handbook.info/. This is the Debian Administrator’s Hand-
book, the e-book version of which can be downloaded freely. However, you
can also pay for the e-book version, and in case you start relying on it, it
is definitely a good idea to give the authors something back for their hard
work. The current (2018-09-12) version of the book if for Debien 8 Jessie,
but the current Debian release is Debian 9 Stretch, so some information my
be outdated.

Ubuntu: Ubuntu is an enterprise distribution with a desktop and a server version. They
have a very active community as well which answers a lot of questions in the
forums.

* https://www.ubuntu.com

https://tutorials.ubuntu.com/. You can filter tutorials for different cate-
gories, e.g. server or desktop.

https://help.ubuntu.com/

https://ubuntuforums.org/

https://askubuntu.com/ This is a searchable question and answer site.

Red Hat Enterprise Linux: As mentioned above, RHEL is an enterprise distribution
and one of the most prominent examples showing how much money you can
earn with free software. They have excellent, though rather technical guides for
many topics, and some things can be only accessed if you have a support contract
with Red Hat.

« https://www.redhat.com/ Their main page is very much like the website of
other companies — a lot of bragging and ads, but it’s still a good starting point
to get a feeling about what Red Hat as a company is doing.

24

https://www.debian.org
https://wiki.debian.org/
https://debian-handbook.info/
https://www.ubuntu.com
https://tutorials.ubuntu.com/
https://help.ubuntu.com/
https://ubuntuforums.org/
https://askubuntu.com/
https://www.redhat.com/

+ https://access.redhat.com/ This is where you start out if you look for help.
Browse a bit; they have a lot of documentation, guides, etc. and many things
can be downloaded as PDF for free.

CentOS: CentOS, the “Community Enterprise OS” is the community version of RHEL.
It is only rarely suited for home Desktop use and the software it ships is very
outdated in many cases (as all the good stuff is reserved for the actual RHEL).
However, if you want to get to know RHEL without paying for a license, CentOS
is a good start and may be useful if you want to run small servers at home/in the
cloud.

* https://centos.org/

« https://wiki.centos.org/. While this Wiki is still alive, it is updated rather
sparsely and the current release CentOS 7 is not documented in any reason-
able fashion. So much so, that https://wiki.centos.org/docs/ just tells you
to visit the above mentioned https://access.redhat.com/.

Arch Linux: While Arch Linux is considered to be rather complicated and suited only
for experienced users, it has a thriving community and a very well maintained
Wiki with in-depth explanations for a lot of things. Highly recommended if you
want to know something in detail.

* https://wiki.archlinux.org/

We’ll stop here, but you can comb through all the other distros’ websites as well, which
is a very useful thing to do before you change distro.

If you are interested how many distros are out there and which ones are the most
heavily used, you may find https://distrowatch.com/ (lists also non-Linux UNIX sys-
tems like the various BSDs) or https://static.lwn.net/Distributions/ useful.

Other Online Sources

However, there are also sites dedicated to Q&A, i.e. you can post a question and some-
one in the community replies with a hopefully correct answer. The ones you’ll en-
counter over and over again are:

Stack Overflow: To be found at https://stackoverflow.com/. If you did some program-
ming already or are going to do so, this site will also pop up many times. When-
ever you research some problem you have with the command line it is almost
certain that you are going to land on Stack Overflow after some time, regardless
which search engine you use.

Stack Exchange for UNIX/Linux: Strictly speaking this is just a subsite of Stack Over-
flow and many topics specifical to (GNU/)Linux and/or UNIX in general will can
be found here: https://unix.stackexchange.com/.

25

https://access.redhat.com/
https://centos.org/
https://wiki.centos.org/
https://wiki.centos.org/docs/
https://access.redhat.com/
https://wiki.archlinux.org/
https://distrowatch.com/
https://static.lwn.net/Distributions/
https://stackoverflow.com/
https://unix.stackexchange.com/

With these tools at your disposal you should be able to solve almost any problem your
new shiny (GNU/)Linux system throws at you. BUT, beware! Not everything people
post there is correct and if you are unlucky, someone may even put some malicious code
in their reply, so always think before you copy-paste something onto your command
line and press ENTER, especially if you have no idea what the command you want to
use can do. Be even more careful if the line you copy starts with sudo. The good thing
about UNIX systems is that you can do anything you like, but the bad thing is that you
can do anything you type.

26

4 The Command-Line

Now, after so much theory, let’s do something practical! The first thing to do is to start
a terminal emulator if you haven’t already done so.

Before we are going to start working with commands, we’ll talk a bit about keyboard-
shortcuts with which you can move quickly on a line. For this purpose just type a
sentence on the command-line without pressing ENTER:

$ this is a beautiful test sentence

Your cursor will now be at the end of the line. If you made a typo somewhere in the
line you can move there using the arrow keys, but this gets annoying pretty quickly as
soon as the line gets long (your mouse won’t work here). Thus, play around with the
following shortcuts:

CTRL-A | Move to the beginning of the line.

CTRL-E | Move to the end of the line.

CTRL-K | Delete everything from your cursor to the end of the line.

CTRL-U | Delete everything from your cursor to the beginning of the line.
CTRL-T | Switch the sign currently below the cursor with the one before it and
move the cursor one character to the right.

ALT-F | Move one word forward.

ALT-B | Move one word backwards.

ALT-T | Switch the word below the cursor with the one preceding it.

There are even more shortcuts, so look them up on your own if you're curious, but the
ones above will suffice for the beginning. In case you don’t see the use in some of them:
That’s ok, use cases will come ;)

And there is one more vital thing to know about moving aroung on the command-line:
tab-completion. If you want to pass an argument to a program and you’ve already typed
enough that the argument is uniquely identified, you can just hit TAB and the bash will
automatically complete the argument. Why this is extremely useful will become clear
once you start using commands and arguments, just keep this in mind. Additionally, if
you press TAB twice, the bash will list all currently possible arguments. Try it out when
following the instruction below!

4.1 Moving and Looking Around

Now, onwards to the command-line! For starters, let’s find out where we currently are
- you already know how to do this:

27

$ pwd
/home/me

Now, let’s see what’s in the directory we’re currently in, which we can do with 1s(1),
which “lists” directory entries:

$ 1s
bin documents nikola playground unixcourse
Desktop Downloads personal tor-browser_en-US

As you already know, you can pass options to 1s. We’ll start with the -a | --all
option. This one shows you all files in the current directory:

$ 1s -a

Downloads .pki
.. .dvdcss playground
.android .FbNetworks .python_history
.ardentryst .gconf .ssh
.bash_history .gnupg tor-browser_en-US
.bash_logout .gnuplot_history .vim
.bash_profile .gphoto .viminfo
.bashrc .ICEauthority .vimrc
bin .lesshst .wget-hsts
.cache .local .Xauthority
.config .mozilla .xsession
Desktop .neomutt .Xxsession-errors
.dmrc .xsession-errors.old

What?! Where did all these files come from?! Don’t worry, they have been here all
the time, but they are hidden files. You see that those files which have not been listed
before, start with a dot ‘.’ and this indicate that they are ‘hidden’. This does not mean
that you are not allowed to see them, but they are mostly configuration files which you
just don’t want to see every time you use 1s as they just add a lot of useless output.
For example, your browser will store your bookmarks, preferences, cookies, browsing
history, etc. in a hidden directory. This way it does not confuse your profile with the
one of another user who uses the same computer. Thus, a hidden file is just a file whose
name starts with a dot, and programs like 1s don’t display them by default — nothing
more to it. You can also create hidden files yourself if you start their name with a dot!

However, two hidden files are found in every directory: ‘.” and ‘. .". ‘.’ is a pointer
to the directory itself' and ‘..’ is a pointer to the directory above this directory. This
is a very convenient shortcut if you want to change to the directory above the one
you are currently in, but you don’t want to type the absolute path from the root direc-
tory. Changing directories? Great, we’re already at the next command: cd which very
surprisingly stands for ‘change directory’. It takes as an argument a path (relative or
absolute) and changes your current working directory:

!Why this is useful will become clear later.

28

$ cd Documents

$ pwd
/home/me/Documents
$ cd ..

$ pwd

/home/me

You can see here that we changed into the Documents directory and from there one
directory "upwards” by using . . as shortcut. Otherwise we would have had to type cd
/home/me to change from /home/me/Documents to the /home/me.

Two more things regarding cd:

« As we’ve seen in 3.3.3, it is a shell-builtin, so if you want to know how it works,
you have to type “help cd”.

« If you just type cd on the command-line and press ENTER without providing an
argument, cd will change to your home directory. The home directory is where
all your personal stuff is stored and in the examples above, my home directory is
/home/me. Thus, if you get lost in the filesystem or you are in a hurry and just
want to go back to your home directory, type cd, press ENTER and you’ll be right
there.

Now that you’ve seen cd, let’s go back to 1s. Combining 1s, pwd, and cd the filesystem
is yours to explore and we’ll let you do that in a minute, just one more option to 1s and
the associated concepts:

With the -1 option 1s provides you with “long listing”:

$ 1s -1
total 36
drwxr-xr-x

N

me me 4096 Aug 27 14:53 bin

me me 4096 Sep 4 17:49 Desktop
drwxr-xr-x 14 me me 4096 Sep 7 17:40 documents

me me 4096 Sep 10 21:43 Downloads

me me 4096 Aug 24 20:05 nikola

me me 4096 Aug 27 14:54 personal
drwxr-xr-x me me 4096 Aug 26 20:43 playground
drwx-————-- 3 me me 4096 Sep 9 14:36 tor-browser_en-US
drwxr-xr-x 2 me me 4096 Sep 17 11:48 unixcourse

N

drwxr-xr-x

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

W P 00N

As you can see there is a lot more information about each file. Actually, the output is
now separated into fields, separated by a space. These fields are from left to right:

Permissions: See below, that’s the new concept we’re going to explain ;)

Hard Links: The number of hard links which point to this file. If you are interested in
links, read it up, we won’t cover them here as you don’t need them for now.

29

Owner: The user to whom this file belongs.
Group: The group to which this file belongs.
Size: The size of the file in bytes.

Modification Time: The month, day and time give you the exact time when the file
was last modified. If it was not modified in the current year, the year of the last
modification is given as well.

Name: The name of the file.

Each file has an user owner which is usually the user who created the file in the first
place as well as a group owner, which is usually one of the groups the user owner
belongs to.? But what does that mean?

Well, it has to do with the first field which consists of a rather bewildering number
of letters and dashes at first sight. However, it is actually a very simple system and tells
you what you can do with a file:

The first character tells you what kind of file this is, e.g. d indicates a directory and -
indicates a regular file. There are others as well, but these are the most common and
important ones — if you want to know more look at the info page of 1s(1).

The next nine characters show the permissions of the file which in very short means
who is allowed to do what with a file. These nine characters are actually 3 groups of
3 permission sets: The first three are the permissions of the owner?, the second three
are the permissions for the group, and the third permission set tells you what anybody
else (often called “world” or “other”) is allowed to do.

The reading of permissions is pretty easy: If there is a letter, the permission is present,
if there is a dash it is absent. The postitions in each permission group from left to right
tell you about:

r “Read permission”. If this permission is set, it is allowed to read the file.

w “Write permission”. If this permission is set, it is allowed to write something to the
file, i.e. change it.

x “Execute permission”. If this permission is set, it is allowd to execute this file — this
is typically set for all programs, like 1s(1).

With this information at hand, can you decode this output:
-rwxr-x——x 1 nina hackers 2048 Jan 14 14:21 amazing-script

Try it, write down your solution and afterwards read the following explanation.
This is a regular file, which can be executed by the owner, the group, and everyone
else, can be read by the owner and the group and written only by the owner. It belongs

2From now on we will just speak of “owner” to mean “user owner” and of “group” to mean “group
owner”.
3Yes, even owners are not necessarily allowed to do everything with the file!

30

to user nina and to the group hackers. It is 2048 bytes in size (i.e. 2 KB), was last
modified on January 14" at 14:21, and is called “amazing-script”.

As you’ve seen in 3.2, you can also pass absolute and relative paths as arguments to
1s to tell it what to list. There is one thing you should be aware in this case: If the
argument is a regular file, 1s will list just the file, but if the argument is a directory, 1s
will show you the content of the directory:

$ 1s filel

filel

$ 1s contentdir

file 00 file 05 file 10 file_15 subdir04 subdir09
file 01 file 06 file_ 11 subdirO0 subdir05 subdiril0
file 02 file 07 file_12 subdirO1 subdir06

file_03 file_08 file_13 subdir02 subdir07

file 04 file 09 file_14 subdir03 subdir08

Great, now you are ready for your tour through the filesystem! Use 1s, cd, and pwd to
look around - you are on a free software OS, there are no secrets (except if you don’t
have permission to look at something, of course ;)).

4.2 Working with Files

Up to this point we’ve just looked at files, examined their properties and moved around
in the filesystem tree. This is all nice and fine, but maybe we want to change files’
properties, or add stuff to or remove something from the filesystem. This is what this
section is about. And for now, change in the unixcourse directory you’ve downloaded
at the beginning of 3 to be able to follow all the examples below.

One of the things you may have already wondered about is: What if you want to
have a directory for all of your lovely cat GIFs — how can you create such a directory?
Well, the answer to this is mkdir (1) “make directory”. In its simplest form it just takes
a single argument: The name of the directory you want to create. Note, that this can
be a relative or absolute path:

$ 1s

contentdir file3 onelinefile
dir1l filetodelete renamedfile
dir2 grepfile rmdirectory
dir3 hugefile rminteractive
'dir with spaces' joinl sedfile
errorfile join2 sedfile.bak
filel linefile sortfile
file2 numericsort tablefile

$ mkdir newdir

$ 1s

31

contentdir filetodelete renamedfile
diril grepfile rmdirectory
dir2 hugefile rminteractive
dir3 joinl sedfile
'dir with spaces' join2 sedfile.bak
errorfile linefile sortfile
filel newdir tablefile
file2 numericsort

file3 onelinefile

$ cd newdir

$ pwd

/home/me/unixcourse/newdir

One thing about names: Whether you create directories as we do now, or other files
which we’ll do later, there are certain rules you should adhere to, to make your life
easier: A file name (which includes directory names!) should consist of only letters
of the English alphabet, underscores ‘_’, dashes ‘-’, and digits, and should always start
with an underscore or a letter. Don’t use special characters like &, 3, x, €, etc. and don’t
use spaces, tabs, newlines, etc.! This is just conventional, so you can use whatever you
want, but it may make your life very inconvenient. In case you encounter filenames
containing spaces, you will have to quote the name or escape the spaces using *

". If you use 1s (1) in the course directory you’ll see that there is a directory called “dir
with spaces”. To change into it, you have three options:

$ pwd

/home/me/unixcourse

$ cd "dir with spaces"

$ pwd

/home/me/unixcourse/dir with spaces
$ cd ..

$ pwd

/home/me/unixcourse

$ cd 'dir with spaces'

$ pwd

/home/me/unixcourse/dir with spaces
$cd ..

$ pwd

/home/me/unixcourse

$ cd dir\ with\ spaces

$ pwd

/home/me/unixcourse/dir with spaces

So you see, you can use either single or double quotes?, or just escape each space with
a prepended backslash. Again, we recommend that you don’t do this because it may

“They are not the same in other contexts which we’ll encounter later.

32

break some programs and scripts. Don’t get us wrong — we don’t think that it’s great
that you have to stick with these conventions, but as most people do, it will make it
harder for you to use others’ solutions to problems you encounter.

After this little detour about naming, let’s return to creating directories. Per default
mkdir assumes that the whole path of the directory you want to create exists, except
for the last part of the path, i.e. the part behind the last ‘/°. If you try to create a whole
directory hierarchy, this will fail:

$ 1s dirl
$ mkdir dirl/subdir/subsubdir
mkdir: cannot create directory ‘dirl/subdir/subsubdir’: No such file or directory

The first command creates no output because there is nothing in dir1 and when we
try to create a subdirectory subdir with a sub-subdirectory subsubdir we get an error
message (not a very helpful one in this case, but we know what the problem is anyway).
But surely, there must be a way to create such hierarchies, right? Of course! You just
have to pass the -p | --parents option to mkdir:

$ mkdir -p dirl/subdir/subsubdir
$ 1s dirl

subdir

$ 1s dirl/subdir

subsubdir

Voila, this time the whole path was createdThe first command creates no output because
there is nothing in dir1 and when we try to create a subdirectory subdir with a sub-
subdirectory subsubdir we get an error message (not a very helpful one in this case,
but we know what the problem is anyway). But surely, there must be a way to create
such hierarchies, right? Of course! You just have to pass the -p | --parents option
to mkdir:

$ mkdir -p dirl/subdir/subsubdir
$ 1s dirt

subdir

$ 1s dirl/subdir

subsubdir

Voila, this time the whole path was created.

Nothing persists forever, so from creation we move directly to destruction: Whenever
you want to delete a directory, you can use rmdir (1) “remove directory”. Like mkdir
it takes one (or more) directories as arguments and deletes them. Ok, let’s go!

$ rmdir dirl/subdir
rmdir: failed to remove 'dirl/subdir/': Directory not empty

Hm, that didn’t work out as expected. But this is a good thing in this case. rmdir only
removes directories if they are empty, i.e. there are no files (except ‘.’ and ‘. .’) in it.

33

Why is this such a good thing? Well, now we’re getting at something you should really
remember: On the command-line there is no undo! If you delete something, it is gone
for good and only people with a lot of training and expertise are able to recover files
or directories you deleted.® Therefore, rmdir prevents you from mistakingly removing
a lot of your files with a single line.

However, if you have a situation like we have, where we have dir1 which contains
only subdir which only contains subsubdir which contains nothing and you want to
delete subdir and subsubdir rmdir offers the same option as mkdir does, to delete
such a chain of empty directories, i.e. -p | --parents:

$ rmdir -p dirl/subdir/subsubdir

This deletes all three directories in the given path. Now, recreate the dir1 directory
and move on.

As you might have guessed, rmdir removes only directories — just try it out with the
following file, conveniently placed in your course directory:

$ rmdir filetodelete
rmdir: failed to remove 'filetodelete': Not a directory

Now that wasn’t surprising at all. But how can we remove files? The answer to this is
rm(1) “remove”. Thus:

$ 1s

contentdir filetodelete renamedfile

diri grepfile rmdirectory

dir2 hugefile rminteractive

dir3 joinl sedfile

'dir with spaces' join2 sedfile.bak

errorfile linefile sortfile

filel newdir tablefile

file2 numericsort

file3 onelinefile
$ rm filetodelete

contentdir filel join2 rminteractive
diril file2 linefile sedfile
dir2 file3 numericsort sedfile.bak
dir3 grepfile onelinefile sortfile
'dir with spaces' hugefile renamedfile tablefile
errorfile joinl rmdirectory

This time, the file is gone. And remember what we said earlier about removing stuff?
It’s gone. Totally. Absolutely. No rebirth (without a lot of money). If you'd try to
remove a directory with rm, this won’t work out of the box:

STheir training is usually directly reflected in the rather huge amount of money you have to pay them to
get your data back.

34

$ rm dirl
rm: cannot remove 'dirl': Is a directory

No surprises here. However, rm has some options we’re going to talk about:

-r | -R | --recursive With this option, rm removes files and directories recursively,
i.e. if you pass a directory as an argument with this option rm will remove this
directory and everything within it. Again, no undo. NO UNDO! Sorry, just sayin’.
For the sake of an example:

$ 1s rmdirectory

file_01 file_03 file_05 f£file_07 file_09

file_02 file_04 file_06 file_08 file_10

$ rm -r rmdirectory

$ 1s rmdirectory

1ls: cannot access 'rmdirectory/': No such file or directory

Yes, the directory and all ten files it contained are gone now.

-i If you use this option, rm will ask you to confirm the deletion of each file, which
can save your one file you forgot was in that directory, but really need.® Thus:

$ 1s rminteractive

file_01 file_03 file_05 file_07 file_09

file 02 file_04 file_06 f£file_08 file_10

$ rm -ri rminteractive

rm: descend into directory 'rminteractive/'? y
rm: remove regular file 'rminteractive/file_01'?
rm: remove regular file 'rminteractive/file_05'7
rm: remove regular file 'rminteractive/file_04'?
rm: remove regular file 'rminteractive/file_09'?
rm: remove regular file 'rminteractive/file_07'?
rm: remove regular file 'rminteractive/file_10'?
rm: remove regular file 'rminteractive/file_02'7
rm: remove regular file 'rminteractive/file_03'?
rm: remove regular file 'rminteractive/file_06'7?
rm: remove regular file 'rminteractive/file_08'?

< BY B <Y<Y B

rm: remove directory 'rminteractive/'? n
$ 1s rminteractive
file_02 file 04 f£file_06

For each question rm asks you have to type ‘y’ for “yes” or ‘n’ for “no”.

SEver realized that “file” is just an anagram of “life”?

35

-f | --force Force rmto do what you told it remove everything without questions” -r
| -R | --recursive was dangerous, this one is where the real bad stuff begins.
Don’t use it if you are not absolutely, 100%, utterly, totally, completely convinced
that you know what you are doing. “Oh, come on”, you may think, “I'm not that
stupid, I know this by now. What can possibly go wrong?”. Well, have a look
at this, were someone accidentally wiped all data of a whole company (including
the backup) with one single rm -rf. The author of these lines once removed all
invoices of a company he worked for, but fortunately there was no -r option
present, so it were just the invoices of the current year. There was no backup. I
had to retype them by hand from printed versions — great fun, 10 out of 10, would

recommend...

So, what else can you do with files? What about copying stuff from one place to some-
where else? This can be done with the cp(1) command. Its basic syntax is:

cp [OPTION]... SOURCE DESTINATION

i.e. after maybe passing one or more options to cd you first tell it what you want to
copy and then you tell it where to copy it. Source and destination can be relative or
absolute paths. As a very simple example, you can do:

$ 1s

contentdir

dirl

dir2

dir3

'dir with spaces'
errorfile

$ cp filel file2
$ 1s

contentdir

dirl

dir2

dir3

'dir with spaces'
errorfile

filel
file2
file3
grepfile
hugefile
joinl

filel
file2
file3
grepfile
hugefile
joinl

join2
linefile
numericsort
onelinefile
renamedfile
rmdirectory

join2
linefile
numericsort
onelinefile
renamedfile
rmdirectory

rminteractive
sedfile
sedfile.bak
sortfile
tablefile

rminteractive
sedfile
sedfile.bak
sortfile
tablefile

However, there are some things about this simple scheme you have to take into account:

« If you want to copy a directory and all its content you have to use the -r | -R |
--recursive option, like with rm when you wanted to delete a directory with its

contents.

« If the destination is a directory, cp will copy the source into the destination di-

rectory, e.g.:

’In some cases rm asks you if you really want to delete a file even without the -i option present. See man

1 rm.

36

https://www.independent.co.uk/life-style/gadgets-and-tech/news/man-accidentally-deletes-his-entire-company-with-one-line-of-bad-code-a6984256.html

$ 1s dirl

$ cp filel dirl
$ 1s dirl

filel

If the destination is a directory, you can give multiple sources, i.e. you can copy
multiple files at once into a directory by listing them all on the command-line and
providing the directory you want to copy them into as the last argument:

$ cp filel file2 file3 dirl
$ 1s dirl
filel file2 file3

But, wait, we already copied filel to dir1, so which version is now in dir1? As
you may have guessed from the behaviour of rm and rmdir: The command-line is
unforgiving. If there is already a file with the same name in a directory, this file
is overwritten and cp won’t tell you about it — it assumes that you know what you

are doing. Fortunately, just like rm there isa -i | --interactive option which
asks you every time a file would be overwritten. In addition to that, cp also
offers the -n | --no-clobber option which tells the program to never overwrite

existing files.

The last but one thing we’re going to cover for working with files is ow to rename and
move them around. This is done by the same utility, mv (1) “move”. Its standard syntax

is:

mv [OPTION]... SOURCE DESTINATION

Not only is its syntax the same as the one for cp, the same caveats about how to move
multiple files and moving directories apply as well, with one exception: There is no -r
| -R | --recursive or a similar option for mv — it always moves a whole directory if
you pass one as source. If you just want to rename a file without moving it into another
place in the filesystem, you just put the destination in the same directory:

$ 1s

contentdir filel join2 rminteractive
diri file2 linefile sedfile

dir2 file3 numericsort sedfile.bak
dir3 grepfile onelinefile sortfile

'dir with spaces' hugefile renamedfile tablefile
errorfile joinil rmdirectory

$ mv file3 renamedfile

$ 1s

contentdir filel join2 rminteractive
diri file2 linefile sedfile

37

dir2 file3 numericsort sedfile.bak

dir3 grepfile onelinefile sortfile
'dir with spaces' hugefile renamedfile tablefile
errorfile joinl rmdirectory

We’ll end this section with something a bit more abstract again. In 4.1 we introduced
you to the concept of permissions when you encountered the output of 1s -1. Permis-
sions were originally used in UNIX when many users sitting in front of terminals (the
hardware devices you saw in 3.1) connected to central computers where all of them
worked at the same time. To enable them to collaborate more easily they could set the
permissions for group and others as they wanted to. This was done by the chmod (1)
“change (file) mode”. chmod’s basic syntax is:

chmod [OPTION]... MODE[,MODE]... FILE...

There are two ways to pass a set of permissions to chmod: By a symbolic representation
and by an octal number. The general format of the symbolic mode is:

[ugoa...l[[-+=] [perms...]...]

The first part indicates for whom you want to change the permissions: u for “user”, i.e.
the user who owns the file, g for “group”, o for “others” and a for “all”. The default is
a, i.e. to change the permissions for everyone, but if you write u you change only the
user’s permissions and if you write ug you change the permissions of the user and the
group. As you may have noticed ugo and a are equivalent.

The second part means what you want to do: + to add the following permissions, - to
remove the following permissions and = to set the permissions to exactly the following
permissions.

The third field consists of the permissions you want to add/remove/set, i.e. the letters
r, w, and x.8

Consider this example:

$ 1s -1 filel

-rw-r--r—— 1 me me 29 Sep 18 15:24 filel
$ chmod g+w filel

$ 1s -1 filel

-rw-rw-r—— 1 me me 29 Sep 18 15:24 filel

As you can see, we gave the group (g) additional (+) write permission (w), but left the
other permissions intact.

Now it’s your turn: Try do remove all rights from the group and the others. Is there
more than one way to do this?

We’re not going to explain the octal mode here: It’s not hard, but it can be confusing
at the beginning and can take a bit more time to grasp — read the manpage if you are
interested :)

81f you look at the manpage of chmod you’ll see that there are three more possible values, but for now,
we’ll ignore them

38

4.3 Working with Content

At this point you know how to move around and how to change files, but you haven’t
learned how to work with the stuff that is in files, i.e. content. Many files on your
system contain human readable® text which you can easily manipulate.

4.3.1 Looking at Content

But before we start writing stuff somewhere, we’ll look at it first. The easiest way to
see the contents of a file is to use the cat(1) command. This is an abbreviation for
“concatenate”, i.e. combining stuff. Its basic syntax is:

cat [OPTION]... [FILE]...

Now let’s unravel the mysteries of the ominous filel with which we played around in
the last section without ever knowing what’s in there:

$ cat filel
A file with copiable content

Well, that wasn’t very mysterious... It just contains a single line of text saying ”A file
with copiable content”. So that is what cat does: It reads the contents from a file and
prints them to the screen. What about another file:

$ cat onlinefile
This is a nice one liner

Ok, also nothing very interesting. But what about this concatenation thing? Have a
look:

$ cat filel onelinefile

A file with copiable content
This is a nice one liner

$ cat onelinefile filel

This is a nice one liner

A file with copiable content

You see, cat concatenates the content of the files in the order you pass them on the
command-line. This is tremendously useful if you want to e.g. combine multiple files
into one very long file without copy-pasting all the stuff. How to do this will be shown
later.

As you may have realized, if files have a lot of content, i.e. many pages of test, cat
will be rather inconvenient because it just prints everything to the screen and you can’t
read fast enough to see everything:

$ cat hugefile

Well, let’s say “readable by some humans” ;)

39

To read through such a file, you can use programs called “pagers” — they display text
files one page at a time. The standard pager on (GNU/)Linux is less(1).!? So, let’s
view our file:

$ less hugefile

To move around scroll forward one page, use SPACE, for backwards use B. You can also
move up and down one line with the arrow keys. To search for a pattern forward press
‘/’ enter the pattern and press ENTER, to search for a pattern backwards, press ‘7’ and
press ENTER. When you finally want to quit the program, press Q.

But then again, how are you supposed to know beforehand how big a file is, i.e.
whether it makes sense to use cat or less? There are different strategies and one you
know already:

$ 1s -1 onelinefile hugefile
-rw-r--r—— 1 me me 431888 Sep 18 17:52 hugefile
-rw-r--r—— 1 me me 25 Sep 17 13:53 onelinefile

If you look at the size column you can see that there is a huge difference between
these two files. Unfortunately, using bytes as a measuse is not very human-readable,
especially because even hugefile could in fact consist of only a single line — a very long
line, but it is possible. Therefore, it would be useful to be able to view the lines of a
file. This can be done with wc (1) “word count™:

$ wc onelinefile

1 6 25 onelinefile
$ wc hugefile

7654 70552 431888 hugefile

wec provides with some useful metadata, i.e. data about data, about a file. The first
column is the number of lines in the file, the second column shows the number of
words in the file and the third column tells you how many bytes the file contains. You
can also list just one of these units using the -1 | --lines for only the line count, -w
| --words for only the word count, and -c | --bytes'! for only the byte count.

4.3.2 Creating Content and 1/0 redirection

After so much information reception it is time to let you create something yourself!
And the first tool for this is echo(1). Very unexpectedly echo echoes what you pass to
it:

%Tn the old days, the standard pager was more (1). When someone wanted to replace it they thought that
“more is less” and thus the name of less.

H“wWhy -c?” you may ask. This is because years ago characters were always encoded in ASCII (see the
Wikipedia entry for an explanation) where each of them was exactly one byte in size and so the -c for
character came into being.

40

https://en.wikipedia.org/wiki/ASCII

$ echo Hello command-line
Hello command-line

This seems easy enough. But don’t be fooled, echo is an extremely useful tool and will
introduce you to a lot of new concepts. Just as an aside: It is often a good idea to put
the stuff you want echo to echo in double quotes. Read the man page to find out why
this is so ;)

The first one is the concept of I/O streams'?. A stream is a flow of data made available
through time. While this sounds rather abstract, you’ve already worked with streams
all the time in this course! Whenever you open a bash there are three standard streams
opened for this bash as well:

stdin or “Standard Input”, i.e. the stream into which you put data. This is usually your
keyboard because this is where you input the stuff you write. The bash then reads
those characters from the keyboard and displays them on the command-line.

stdout or “Standard Output”, i.e. the stream into which the data goes. In most cases
this is your screen or rather the terminal emulator on your screen. Yes, most of
the time a program produces output, it writes it to stdout!

stderr or “Standard Error”, i.e. the stream into which error messages are sent. This
is also mostly your screen and you’ve already seen this in action: Remember
when we tried to remove a non-empty directory with rmdir? There was an error
message displayed and while you saw it on your screen, this was actually written
to stderr and not to stdout.

But why make two stream which write to the same thing?! The reason is simple: They
do so usually, but you can manipulate them indiviually. Manipulate? Oh yeah, you
can play around with those streams until your head spins! This called I/O redirection.

It is time, to create your first file! You know now that whenever echo echoes some-
thing back to you, it actually reads input from stdin and puts it to stdout. But what
if we redirect stdout to a file? See here:

$ 1s

contentdir filel join2 rminteractive
diri file2 linefile sedfile

dir2 file3 numericsort sedfile.bak
dir3 grepfile onelinefile sortfile

'dir with spaces' hugefile renamedfile tablefile
errorfile joinl rmdirectory
$ echo "I want this in a file" > echofile
$ 1s

contentdir errorfile joinil rmdirectory
diri filel join2 rminteractive

12For Input/Output stream.

41

dir2 file2 linefile sedfile

dir3 file3 numericsort sedfile.bak
'dir with spaces' grepfile onelinefile sortfile
echofile hugefile renamedfile tablefile

$ cat echofile
I want this in a file

So now you know that by using ‘>’ you can redirect stdout to a file. Let’s try that again:

$ echo "More content" > echofile
$ cat echofile
More content

Ok, that was not expected. Where’s the former line gone? Well, it’s not here anymore. If
you use ‘>’ to redirect something to a file, the file will be truncated, i.e. totally emptied,
and afterwards the new content will be written to the file. If you want to just add
something to a file, without deleting what is already in there, you have to use “>>”,
which appends data to a file:

$ echo "And now a new line" >> echofile
$ cat echofile

More content

And now a new line

Note that there is no way to put something in the middle of a file using just the
command-line. To do this you need a text editor which we’ll discuss later.

You can also use this redirection on any other command, e.g. if you want to store its
output so you can look at it later:

$ 1s -1 > 1sfile

$ cat lsfile

total 516

drwxr-xr-x 13 me me 4096 Sep 19 10:05 contentdir

drwxr-xr-x 2 me me 4096 Sep 18 15:36 dirl
drwxr-xr-x 2 me me 4096 Sep 17 13:52 dir2
drwxr-xr-x 2 me me 4096 Sep 17 13:52 dir3
drwxr-xr-x 2 me me 4096 Sep 17 15:36 dir with spaces
-rw-r--r—— 1 me me 22 Sep 23 12:29 echofile
-rw-r--r—— 1 me me 63 Sep 19 11:07 errorfile
-rw-r--r—— 1 me me 29 Sep 18 15:24 filel
-rw-r--r—— 1 me me 29 Sep 18 15:33 file2
-rw-r--r—— 1 me me 11 Sep 23 12:22 file3
-rw-r--r—— 1 me me 472 Sep 23 09:49 grepfile
-rw-r--r—— 1 me me 431888 Sep 18 17:52 hugefile
-rw-r--r-- 1 me me 46 Sep 23 12:11 joinl
-rw-r——r—— 1 me me 48 Sep 23 12:11 join2

42

-rw-r--r—— 1 me me 405 Sep 23 12:22 linefile
-rw-r--r-— 1 me me O Sep 23 12:29 1sfile
-rw-r——r—— 1 me me 26 Sep 23 12:22 numericsort
-rw-r--r-— 1 me me 25 Sep 17 13:53 onelinefile
-rw-r--r-- 1 me me 69 Sep 18 15:36 renamedfile
drwxr-xr-x 2 me me 4096 Sep 18 11:14 rmdirectory
drwxr-xr-x 2 me me 4096 Sep 18 15:18 rminteractive
-rw-r--r-— 1 me me 331 Sep 23 11:02 sedfile
-rw-r--r—— 1 me me 331 Sep 23 10:48 sedfile.bak
-rw-r--r—— 1 me me 18 Sep 23 12:22 sortfile
-rw-r--r-— 1 me me 747 Sep 23 11:25 tablefile

Your 1s output has now been stored in a file.
Now, what if we want to do something with stderr?

$ 1s nonexistentfile

1ls: cannot access 'nonexistentfile': No such file or directory
$ 1s nonexistentfile > errorfile

1ls: cannot access 'nonexistentfile': No such file or directory
$ cat errorfile

$ 1s nonexistentfile 2> errorfile

$ cat errorfile

ls: cannot access 'nonexistentfile': No such file or directory

You can see that if we use ‘>’ to redirect the output, errorfile stays empty, because 1s
didn’t print anything to stdout, just to stderr and because we just redirected stdout
to the file, stderr is still printed to the command-line. The redirection for stderr is
“2>” and you can see that using this results in the error message being not printed to
the screen, but written to the file instead.

To be honest, we cheated a bit: Actually the streams are numbered, starting with
zero: stdinis 0, stdout is 1 and stderr is 2. You can only write to stdout and stderr
because they are output streams while stdin is an input stream you can’t write to.'>
Thus, only output streams can be redirected using ‘>’ and you can prepend the number
of the output stream you want to redirect, i.e. 1> or 2>. If you don’t specify anything,
however, 1> is implied because you much more often want to redirect stdout than
stderr and this is why just >’ above worked as it did.

But we talked about “manipulating streams individually”. What does that mean?

$ 1s filel nothere

1s: cannot access 'nothere': No such file or directory
filel

$ 1s filel nothere > lsfile 2> errorfile

$ cat 1lsfile

13This is pretty easy to understand if you think about the meaning of the streams: How would you try to
write to your keyboard?

43

filel
$ cat errorfile
ls: cannot access 'nmothere': No such file or directory

As you can see, it is possible to redirect stdout and stderr to different files. This can
be very useful if you have a program with a lot of output and you want to keep normal
output and error messages apart.

Note that if you want both of them to redirect to the same file you have to first
redirect one stream to the file and then redirect the other one to the other stream:

$ 1s filel nothere > twostreams 2>&1

$ cat twostreams

ls: cannot access 'nothere': No such file or directory
filel

To redirect stderr to stdout you use 2>&1 which reads approximately as “redirect
stderr to where stdout writes to”. You could also do the following:

$ 1s filel nothere 2> twostreams 1>&2

$ cat twostreams

ls: cannot access 'nothere': No such file or directory
filel

The result is the same. Note, however, that the order is important: First, redirect one
stream to a file, and afterwards redirect the other stream to it. This makes sense: If you
read the sentence describing 2>&1 carefully, you’ll notice that it says “where stdout
writes to” and not “to stdout”. Thus, if you redirect stderr to stdout first, and after-
wards redirect stdout, stderr writes to where stdout wrote to before you redirected
it.

To finish this, we’ll give you a little shortcut: If you don’t want to care about this
first and second thing and consider “> filename 2>&1” an awful lot to type, you can
use the short version: “&> filename”. This is much more convenient, but introduces
a new caveat: Not all shells are the same and this shortcut is something that works in
bash but does not necessarily do so in other shells you may encounter. Just keep this
in mind if you run into trouble ;)

In 4.3.1 when we introduced you to cat we mentioned that you can use it to combine
contents of multiple files into a single one. Now you have all the necessary tools; play
around with cat and I/O-redirection :)

4.4 Archiving and Compression
Sometimes it is useful to put files into a collection called an archive. An example would

be if you want to send multiple files via email, but you don’t want to append 10 files,
but just one — this would be an archive.

44

Another thing that is useful in many cases is compression. Compressing data means
to encode it in a way that uses less bits than the original data. This is possible by using
algorithms which make use of redundant data — most data has such redundant elements
because it is in certain file formats which demand structure, i.e. patterns.

4.4.1 Archiving with tar

To create an archive of multiple files on (GNU/)Linux and many other UNIX-like sys-
tems you can use the tar (1) “tape archive” utility. You can tell by its name that this
program is pretty old, as it was created to work with tapes.

tar has an incredible amount of functionality (have a look at the manpage) and we
will cover only the most basic stuff here. To create an archive you can use:

$ tar -cvf myfirstarchive.tar filel file2 hugefile
filel

file2

hugefile

The explanation of the options is quite straightforward:

-c | --create tells tar to create an archive.
-v | --verbose tells tar to be verbose, i.e. to print each file it processes to stdout.
-f | --file=ARCHIVE tells tar how it should call the archive. It is conventional to

add the .tar extension to tar archives, though not strictly necessary. However,
do yourself a favour and use this extension ;)

After you told tar what you want and where to put it'* you have to put all files you
want to be in the archive on the command-line. If you pass a directory to tar it will
automatically put all files in the directory in the archive as well, so you don’t have to
tell it explicitely to do that like you had to with cp or rm.

To check that everything worked correctly, you can check which files are in an
archive by using the -t | --1list option:

$ tar -tf myfirstarchive.tar
filel

file2

hugefile

This works essentially like 1s but for archives.

But if you received an archive, the relevant thing you want to do is not just to list
the files but to extract them on your system. To try this, create a directory, change into
it and extract the files there using the -x | --extract | --get option:

14I.e. the name of the archive. This can be an absolute or a relative path.

45

$ mkdir tar-dir

$ cd tar-dir

$ 1s

$ tar -xvf ../myfirstarchive.tar
filel

file2

hugefile

$ 1s

filel file2 hugefile

It is always a good idea to look into an archive you downloaded from the Internet before
extracting it, to make sure that it really contains the files you want and not something
else.

4.4.2 Compression Utilities

While archiving today is done mostly with tar, there are several utilities to compress
files. Each of them uses a different algorithm to compress the data, but their usage is
very similar. The only thing you should know about the algorithms used is how efficient
they are in order to decide which one will be most appropriate for the problem you are
facing.

One important fact you should know before starting to use compression is the follow-
ing: Don’t compress data which is already in a compressed format! If you do this you’ll
end up with a file that is bigger than the original one. Why is this? Well, as pointed out
above, compression utilizes redundancies in data to store the same information in less
bits. It also adds a bit of metadata to make recovering of the original data possible. If
you have compressed data once and your compression algorithm is decent, there will
be no redundant bits left to remove. Thus, if you now apply compression again, the
algorithm will find nothing it can compress, but still adds its metadata, meaning you
have more data than before.

For this reason, it is a good idea to check if the format of the files you want to
compress already uses compression — well known examples are .pdf-files, .odt-files,
and even .docx-files. You can try this out for yourself after you’ve learned how to use
the utilities.

gzip(1)
The first tool we’re going to look at is gzip(1). Its basic syntax is:
$ gzip FILENAME...

By default gzip will do the following to each file you pass to it:

« Compress the data and store it in a file with the same name as the original plus
the . gz extension.

46

« Remove the original file.

This especially the second point is important to keep in mind - if you want to keep your
old file(s), use the -k | --keep flag.
To decompress a compressed file you have two options:

1. Use the -d | --decompress | --uncompress option.
2. Use the gunzip command which is more or less just a shortcut of the above.

By default this restores the uncompressed file and deletes the compressed one after-
wards — again you can use -k | --keep flag to change this behaviour.

However, sometimes you just want to see what’s in a compressed file without storing
the decompressed version. To do this, you have two options again:

1. Use the -c¢ | --stdout | --to-stdout flag which little surprisingly just prints
the contents of the file to stdout.

2. Use the zcat utility which is again just a shortcut for the above.
Demo time!'®

$ 1s -1h hugefile

-rw-r—-r—— 1 me me 431888 Sep 18 17:52 hugefile

$ gzip hugefile

$ 1s hugefile

1ls: cannot access 'hugefile': No such file or directory
$ 1s -1h hugefile.gz

-rw—r——r—— 1 me me 165943 Sep 18 17:52 hugefile.gz

$ gunzip hugefile.gz

$ 1s hugefile.gz

1s: cannot access 'hugefile.gz': No such file or directory
$ 1s -1h hugefile

-rw-r--r—— 1 me me 431888 Sep 18 17:52 hugefile

You can see that the original file was compressed to less than half of its size! However,
you can do even better: Compressing data takes time and time is often precious. The
better the compression the longer it takes, which can be a problem. Therefore gzip
provides an option to adjust the speed vs. compression quality. You can pass it a
number between 1 and 9 preceeded by a dash to indicate you want the program to be
really fast (-1) or compress really good (-9). The default level is -6. Have a look:

$ 1s -1 hugefile
-rw-r--r-— 1 me me 431888 Sep 18 17:52 hugefile
$ gzip -1 hugefile

15The -h | --human-readable option to 1s(1) makes the size output more readable for as by adjusting
the units; e.g. 1024 byts will be shown as 1K instead to indicate that this is one KB.

47

$ 1s -1 hugefile.gz

-rw-r--r-— 1 me me 195743 Sep 18 17:52 hugefile.gz
$ gunzip hugefile.gz

$ gzip -9 hugefile

$ 1s -1 hugefile.gz

-rw-r--r—— 1 me me 165202 Sep 18 17:52 hugefile.gz

So the best compression produces a file which is about 15% smaller than what the
worst compression creates. This may seem minor to you, but think about data center
which have to store hundreds of thousands of terra bytes of data where this can make
an enormous difference.

And now a quick demonstration of zcat:

$ cat filel

A file with copiable content
$ gzip filel

$ 1s filel.gz

filel.gz

$ zcat filel.gz

A file with copiable content
$ 1s filel.gz

filel.gz

You can see that in this case the compressed file stays intact and just its content is
output to stdout.

Of the compression utilities we’re going to discuss here, gzip is the “worst” one in
terms of compression, but it is still widely used and “worst” in this case means still very
good — and fast!

bzip2(1)

The bzip2(1) command has pretty much the same syntax and default behaviour as
gzip, and there are a bunzip2 as well as a bzcat utilities. Compressed files get the
.bz2 by default.

However, not all things are totally identical, so read the man page of bzip2 and play
around a bit to compare the compression rates of bzip2 and gzip. In general, bzip2
offers better rates than gzip but worse than the following utility.

xz (1)

Again, syntax and behaviour are very similar to the above and there are unxz and xzcat
utilities offering the same functionality as with the other two programs. By default
compressed files get the .xz extension.
This is the best and most versatile compression tool of the ones we discuss which will
become apparent if you read its much longer man page and see what options it offers.
Again, play around to get a feeling for the program.

48

4.4.3 Combining Archiving and Compressing Data

You’ve seen that you can put multiple files into an archive which is a single file and
you know that you can compress files — wouldn’t it be convenient to combine these
features, i.e. to create an archive with all the files you want and then compress the
whole archive in one step? The good news is: You can. The better news is: tar has
options to combine this into one single step.

-z | --gzip What this option does depends on the arguments you pass to tar. If you
have given the -c option, tar will first create an archive and then compress the
whole thing in one step:

$ tar -cvzf files.tgz filel file2 file3
filel

file2

file3

$ 1s files.tgz

files.tgz

$ tar -xvzf files.tgz

filel

file2

file3

Conventionally gzip compressed tar-archives use .tar.gz or less verbose .tgz
as extension.

-j | --bzip2 This compresses/decompresses a tar archive using the bzip2 utility.
Such archives usually get the .tbz or .tbz2 extension. Again you can also use
.tar.bz2 if you want to be more verbose.

-J | --xz To your surprise, this will create a xz-compressed archive. The conven-
tional extension is .txz in this case.

Note that if you use compression with tar the original files stay intact; just like when
you use tar to create an archive.

4.5 Textfiles, Pipes, Wildcards, and a Little Bit of Regex

Here we enter the last big section about working with files and their content on the
command-line, so take a deep breath and get ready to learn some incredibly useful
concepts and tools!

All of them are mainly concerned with working with textfiles. You’ve already en-
countered echo, cat, less, and wc, but we’ll add many more and find new applications
for some of them as well.

49

4.5.1 Of Heads and Tails

Sometimes you want to look only at the beginning or the end of a file, e.g. if you do
some C programming you may just want to see the #includes and comments at the top
of a source file, or you've written a KIgX file and forgot which packages you included,
but you want them in a new project, so again, you only want the first few lines. To do
this, there is the head (1) utility, whose basic syntax is:

$ head [OPTION]... [FILE]...

It prints the “head” of a file to stdout, which by default means the first 10 lines of
each file you passed to it as an argument. However, 10 is sometimes not enough (or
too much), so you can easily control the number of lines being printed with the -n |
lines=NUM option:

$ head linefile
Line 02

Line 03

Line 04

Line 05

Line 06

Line 07

Line 08

Line 09

Line 10

$ head -n 5 linefile
Line 01

Line 02

Line 03

Line 04

Line 05

$ head -5 linefile
Line 01

Line 02

Line 03

Line 04

Line 05

As you can see, you can leave out the -n and write the desired number directly after
the dash.

On the other hand, you may have added something to a file and don’t remember
what it was, or if you are running a web server or anything else that creates logs it is
often useful to just look at the last lines of a textfile. The utility of choice in this case
is tail(1). Its syntax is equivalent to the one of head and by default it prints the last
10 lines of a file to stdout.

50

There is one common usecase for tail, however, which is not commonly found with
head: We mentioned programs creating log files, i.e. files which log their activity.
These files increase through time as the programs append more and more data to the
end of the logs. If you want/have to monitor such programs, it is often useful to watch
the logs while growing, but of course you only want to see the new entries at the end
of the file. This can be done using tail with the -f | --follow option. To test this,
do the following:

1. Type tail -f linefile.
2. Open a second terminal window and change to the unixcourse directory.

3. Append a new line to linefile:
$ echo "newline" >> linefile

4. In the window which runs tail -f linefile you will see that a new line has
been added.

Now try what happens, if you type ‘>’ instead of “>>”.
To stop tail from running, go to the terminal window it runs in and press CTRL-C.
This will terminate the process. We’ll explain this to you in 4.6, don’t worry.

4.5.2 Sorting Text and Using Pipes

You’ll encounter many situations where you want to sort the content of a file — e.g. a
list of words you want to sort alphabetically or some numbers representing measure-
ments and you want to quickly check their range. This is what the very fittingly named
sort (1) program is good for:

$ cat sortfile
T

sort sortfile

H O WWwe®»uvHDm=0 = =W

51

=+ 9=

That was easy enough! And now for numbers:

$ cat numericsort
9

253

85

76

0010

1000

$ sort numericsort
0010

1000

123

253

76

85

9

What?! Most likely this did not correspond to your expectations. How can sort think
that 1000 is less than 9?? Of course, sort is not that stupid. The problem is caused by
different expectations: sort sorts text alphabetically and numbers are just part of the
alphabet: They come before all letters and there are exactly 10 of them: 0, 1, 2, 3, 4,
5, 6,7,8,and 9. Thus, 1000 and 9 are just words — 1000 starts with 1 which precedes 9
and must thus be placed first, like abcd precedes z. That is what alphabetically sorted
means: you order everything according to their first letter, and only then you look at
the second one to order those with the same first letter further, etc.

“OK”, you may say, “this may be an answer, but it is still pretty annoying.” Cor-
rect. And because this problem is very common, sort offers the -n | --numeric-sort
option which tells it to sort the lines of a file numerically:

$ sort -n numericsort
9

0010

76

85

123

253

1000

Much better!

52

In the above output, which sorted the lines of sortfile alphabetically the letter B
appeared twice. This is all nice and fine in many situation, but sometimes you want
only unique the unique entries in a file, e.g. if you want to check how many different
measurements you had or how many different users accessed your web server. If you
do some research, you’ll find that this is what the uniq(1) program thus. If you read
its man page you’ll find the following:

Note: ‘uniq’ does not detect repeated lines unless they are adjacent.

What this essentially means is, that you have to be sure that all duplicate lines in a file
are adjunct before passing the file to uniq. One possibility to achieve this is to sort the
file first. Using what you’ve just learned and I/0 redirection, you can do the following:

$ sort sortfile > tmp
$ uniq tmp
A

=9 =2Ho0wW

Great, there is only one line now starting with B. However, this workflow is rather
clumsy. And worse: Imagine the file whose unique entries you want has 10 or even
100 GB - this approach forces you to create another file of the same size just for this
little task.

Surely, there must be more intelligent way to do this! There is: Pipes.'®

A pipe is a unidirectional data channel which allows you to “pipe” the output of one
program as input to another program, i.e. stdout of one program will be sent to stdin
of another program.!”

To pipe the output of one program to another one, you use the vertical bar ‘|

sort sortfile | uniq

$
A
B
C
I
N
P
T
W

18For those of you eagerly reading man pages who have already found the -u | --unique option for
sort: Yes, this works perfectly fine, but for now, pretend you have no idea ;)
17 Actually, pipes can do more than just this, but for our purposes, this is totally sufficient.

53

It does not look like much, but this is one of the most powerfull abilities the command-
line offers because you can combine arbitrarily many commands in this manner, each
one changing the output and passing it to the next. Try to find out what the following
line does and what output you expect before running it:

$ sort sortfile | uniq | head -n 5 | tail -n 3
Or what about this:
$ head -n 200 hugefile | less

You can do an incredible lot of things with piping and we’re going to encounter more
usecases Soon.

Note that you pipe stdout to stdin, leaving stderr alone. This means that if some-
thing in your pipe goes wrong, you’ll see the error messages printed to the screen:

$ 1s filel file2 file3 file4 | head -2

ls: cannot access 'file4': No such file or directory
filel

file2

4.5.3 Wild Cards and Gentle Regexes

Until now you passed each argument you wanted a command to process directly to it,
only using tab completion to increase your speed.

But, what if you have a directory with hundreds of files and you don’t even know
all of their names, but you do know that all of them contain some string or have a
common number in their name? In this case you may want to use wildcards. Wildcards
are characters the shell treats as special and which enable you to look for patterns.
They are:

* The asterisk matches any string, including the null string, i.e. the empty string.
? The question mark matches any single character.
[...] This pattern matches any one of the enclosed characters.

But what does that mean? Let’s look at some examples:

$ 1s %
contentdir filel linefile sedfile
diri file2 1sfile sedfile.bak
dir2 file3 numericsort sortfile
dir3 grepfile onelinefile tablefile
'dir with spaces' hugefile renamedfile
echofile joinl rmdirectory
errorfile join2 rminteractive
$ 1s xfile

54

echofile hugefile onelinefile sortfile
errorfile 1linefile renamedfile tablefile
grepfile 1sfile sedfile

$ 1s filex

filel filel0 file2 file3

$ 1s *filex

echofile file2 hugefile renamedfile tablefile
errorfile file3 linefile sedfile

filel grepfile 1sfile sedfile.bak

filelO hasfileinit onelinefile sortfile

$ 1s file?

filel file2 file3

$ 1s [flsn]x*

filel file2 1linefile numericsort sedfile.bak
filel0 file3 1sfile sedfile sortfile

Try to explain the output yourself and only read on afterwards!

The first example just passes a ‘*’ to 1s and as this matches any pattern, all files
in the directory are listed. The second example matches all files whose name ends
in file. The third example matches all those whose name begins with file. The
fourth example matches any file whose name contains the string file somewhere. The
fifth example matches any file whose name starts with file followed by exactly one
additional character. The last example matches any file whose name starts with £, 1,
S, Or n.

Wildcards can be very handy to match only certain files but not others. However,
they are restricted to the command-line and still very coarse grained filters. What if
you want to check if a pattern exists e.g. at the end of lines in a file? This can be
achieved using a regular expression, or regex for short.

Regular Expressions and grep(1)

First, let’s shortly introduce you to the grep(1) utility. This is the program of choice if
you want to “grab” some text patterns in a file. Using less and cat you know how to
look at everything that’s in a file and in combination with sort, uniq, head, and tail
you've learned to remove some information, but until now you can’t look for some
specific patterns in a file, e.g. is there a measurement of exactly “3.14159265358979”
or a sentence which contains the word “octothorpe” in the file?

With grep you're able to do this. Its basic syntax is:

grep [OPTION]... PATTERN [FILE]...

and the program looks for PATTERN in each file you pass to it. So, let’s see if this
measurement we talked about above is found:

$ grep "3.14159265358979" grepfile

55

$ grep "octothorpe" grepfile
but only here you'll find a wild octothorpe "#"
and for the curious: hash == hashtag == octothorpe

Now you know that there is no line containing the beginning of pi in this file, but
two contain the word “octothorpe”. If you also want to know which line(s) contain
matching patterns, use the -n | --line-number option to grep.

Very well, but what about this regex stuff? The pattern you pass to grep can be a
regex. Using regexes is similar to using wildcards, but it is much more powerful. To
get the official definition for POSIX'® regular expressions you can read regex(7), but
we’ll do it a bit less formal.

As with wildcards, certain characters in regexes do not have their literal meaning.
These are called metacharacters. These metacharacters are:

The caret matches the beginning of a line.
$ The dollar sign matches the end of a line.
The dot matches any single character (similar to the “?” wildcard).
[1 Aswith wildcards, a bracket-expression matches any single character within

the brackets.))))
[~ 1 A bracket-expression starting with a caret matches any single character not

found within the brackets, ["abc] matches anything except a, b, and c.

* The asterisk in a regular expression matches the preceding element 0 or more
times. Note that this is different from the meaning of the asterisk as a wild-
card! Using wildcards, the expression b* matches everything that starts with
the letter ‘b’, but as a regular expression it matches 0 or more ‘b’s!

With these new knowledge, try the following using grep with grepfile:
« Print all lines which contain a ‘#’.
+ Print all lines which begin with a ‘#’.
* Print all lines which end in a punctuation mark.
+ Print all lines which end in ‘Z’ or ‘z’.
« Print all empty lines.
« Print all lines which contain no ‘a’.

Check you results by looking at grepfile with cat or less. If you can solve all of them:
Great! If not: Don’t despair, it takes time to get used to the concept of regexes.

18«portable Operating System Interface X”. The ‘X’ was appended because it was intended for UNIX-like
OSs.

56

There is also a very useful component to grep and regexes if you like to play cross-
word puzzles: On many distros, you can find at least one word list of the language your
system runs on in /usr/share/dict. The most common one is just called “words”. On
my system it contains 102401 words. Suppose now that you are looking for a mountain
range consisting of 12 letters, the second one is a ‘p’, and there fifth, fourth, and third
to last letters are “hia”:

$ grep '".p..... hia..$' /usr/share/dict/words
Appalachia's
Appalachians

As an aside: If you ever want to look for one of the metacharacters as a literal, e.g. you
want to know which lines contain a ‘$’ you have to escape them with a backslash, i.e.
you have to type “\$” in your pattern.

However, regexes don’t end here. There are some more metacharacters than those
we’ve see so far and we’ll cover them now:

() The expression between the parentheses is seen as a single element from the
outside, e.g. (abc)* matches 0 or more occurences of the string “abc”, e.g.

” o«

it matches “abc”, “abcabc”.
\n Matches the n" expression delimited by parenthesis, e.g. (ab) (cd)..\2\1

matches any string that starts with “abed” followed by two characters fol-

lowed by “cd” followed by “ab”.

{m,n} Matches any string that contains the preceding expression at least m and at
most n times, e.g. q{2,5} matches 2, 3, 4, or 5 consecutive ‘q’s.
The version of grep that is installed on most (GNU/)Linux distros also allows
some variations of this scheme: If you pass only one number n without
a comma, the expression matches occurences of exactly n times the same
character, e.g. d{3} matches exactly “ddd”. You can also leave out one of
the numbers but provide a comma to give just a lower or upper bound, e.g.
i{, 10} indicates “up to 10 consecutive ‘i’s” while i{10,} reads as “at least
10 consecutive ‘i’s”.

? Matches the preceding expression zero or one times, e.g. friends? matches
“friend” or “friends”. Like with the asterisk, this differs from the question
mark if it is used as a wildcard! The wildcard ‘?’ is the same as the regex

[
+ The plus sign matches one or more occurences of the preceding expression,
) [13 2 [13

e.g. w+ matches ‘w’, “ww”, “www”, etc. The difference to the asterisk is
that the plus sign does not match zero occurences.

The vertical bar matches either the preceding or the following expres-
sion, e.g. ab|Bc matches “abc” and “aBc”. Of course, this could also
be done by a[bBlc, so why care about ‘|’? Well, if you combine it with
parentheses or braces, it becomes clear: (sw) |m| (gr)eet matches “sweet”,
“meet”, or “greet” or (Ada) | (A\. Lovelave matches “Ada Lovelace” and
“A. Lovelace”. Or think about something like a{2,3}|e{1,53}.

57

Unfortunately, with these metacharacters things are a bit confusing: While you had
to use a backslash if you wanted the literal meaning of the metacharacters we talked
about before, with this group it is the other way around: grep (and other tools) interpret
them literally, unless you prepend a \’! For example, ‘+’ is interpreted as a plus sign, you
have to type \+ to get the regex meaning. This can be pretty annoying, especially as
this behaviour is not consistent: Some tools treat all metacharacters as metacharacters.
And to make things really funny: If you pass the -E | --extended-regexp to grep, it
will also interpret all metacharacters as metacharacters!

However, this will become less confusing as soon as you start using regexes regularly.
Try to do the following, and play around with the -E switch:

 Print all lines which contain at least on ‘Z’ or ‘z’.

« Print all lines which contain two expressions enclosed in parentheses. Then try
to print all lines where there are two expressions in parentheses which follow
directly after each other. And finally try to print only those lines where the
parentheses-expression have some text between them.

+ Print all lines containing the word “fox” or the word “bash”.
« Print all lines which consist exclusively of ‘a’s.

« Print all lines which consist exclusively of 3 or 4 ‘a’s.

« Print all lines which consist exclusively of at least 3 ‘a’s.

Check you results by looking at grepfile with cat or less.
Now that you know some basic stuff about regexes and know the basics of grep, let’s
move on to two other programs which use regexes extensively:

sed(1) and awk(1)

These two utilities are much more powerful than those you encountered before, espe-
cially because awk is in fact a full-blown programming language, but we’ll introduce
only the very basics.

sed which is an acronym for “stream editor” is a tool with which you can edit a
stream of textdata and print it to stdout (or redirect it to a file, of course). The usual
way to invoke sed is:

sed [OPTON]... -e 'SCRIPT' [FILE]...

where SCRIPT is a command you pass to sed that tells it what to do. sed will then
apply this command to each line of the input file. Sounds very confusing, but let’s
work through an example:

58

$ cat sedfile

This text talks about birds. Why? Because we all know that birds are

the best animals. All birds are much more beautiful and intelligent than
any other species (including humans). No one can ever doubt that birds
are superior. And one day, birds will take over the world! Thus, don't
ever mistreat a bird, it will get its revenge!

What utter nonsense! Birds?! Ridiculous! Surely it’s moles who’ll subdue the world in
the near future! This text must be adjusted:

$ sed -e 's/bird\(s\)\?/mole\1/g' sedfile

This text talks about moles. Why? Because we all know that moles are

the best animals. All moles are much more beautiful and intelligent than
any other species (including humans). No one can ever doubt that moles
are superior. And one day, moles will take over the world! Thus, don't
ever mistreat a mole, it will get its revenge!

Much better! But how to dissect the command to sed?

s This is the command which means “substitute” whose syntax is
s/REGEX/REPLACEMENT/FLAGS

There are other commands, like d for delete or a for append something.

/ The slash is used here as a delimiter character. This is just conventional and you
can use any other character as a separator. Note, however, that in case you want
your delimiter appear in the REGEXP or REPLACEMENT you have to escape it using
a backslash.

bird\(s\)\? The pattern to match.'®

mole\1l The replacement. The \1 refers to the first expression in parentheses in the
pattern before, so if there is no ‘s’, it will be empty and if there is, it will print
one.

g This is a flag meaning “global”. If you don’t use it, sed only substitues the first match
of the regex on a line and leaves the rest alone. Just repeat the command above
but delete the g to see what happens.

Phew, that’s a lot to congest. But once you get the hang of it, sed can be immensely
useful.

A word of caution about redirection: Only in rare cases do you want to see the
changes sed made just on the command-line; usually you want them to be stored some-
where and in many cases you want to replace the old file with the new content. Beware,
the following will not work in the way you may expect:

19This regex is more complicated than it has to be, because we wanted to illustrate grouped expressions.
Can you give a simpler version that works as well in this situation?

59

$ sed -e 's/bird\(s\)\?/mole\1/g' sedfile > sedfile

If you do this, sedfile will be empty afterwards. But why? When you invoke sed and
tell it to redirect its output to sedfile the first thing it does is to open this file for writing
and because you used the greater-than operator it will truncate the file (i.e. empty it)
and only then starts working on the now empty file. If you used the >> operator, the
changed text would be appended to the current file, but the old content would still be
there — most likely also not, what you wanted. This leaves you with two possibilities:

1. Redirect the output to a temporary file and use mv afterwards. This has the big
advantage that you can check your changes before making them final.?°

2. Use sed’s -i[SUFFIX] | --in-place[=SUFFIX] option. This tells sed to edit files
in place. If you supply a SUFFIX, sed will create a backup of your original file
with this suffix, which you can use to restore the old file if something has gone
wrong.

sed can also be used to print only certain lines from a file, regardless of any patterns.
This can be done using the p command and the -n option: If a line doesn’t match
anything you specified in a command, by default sed will print this line unchanged.
To suppress this behaviour and show you only those parts of the file that sed works
on is what the -n | --quiet | --silent option is for. The p command is the “print”
command and can be prepended by a line number, e.g.:

$ sed -n -e 'lp' sedfile
This text talks about birds. Why? Because we all know that birds are

prints only the first line of sedfile. We’'ll use this in 4.5.4.

After sed, we’ll have a quick glance at awk. The awk program is actually an implemen-
tation of the AWK programming language which owes its name to its creators Alfred
Aho, Peter Weinberger, and Brian Kernighan, but after learning it, some people have
concluded it must come from “awkward”. We won’t go into any details here, just be
aware that it exists and look at the following example:

$ awk '{ print "line" NR ": " $0; }' sedfile

linel: This text talks about birds. Why? Because we all know that birds are
line2: the best animals. All birds are much more beautiful and intelligent than
line3: any other species (including humans). No one can ever doubt that birds
line4: are superior. And one day, birds will take over the world! Thus, don't
lineb: ever mistreat a bird, it will get its revenge!

You can see that this command prepended the word “line”, the line number, stored
in the variable (see 4.7) NR and a space in front of each line. The current input line is
stored in the variable $0.

If you are totally confused now: That’s OK, sed and awk are rather advanced tools,
but as they can be immensely useful it is great to know about them and what they do

1t is in general a good idea to first output sed’s results to stdout to check if the changes work as intended.

60

in general, so you can come back and learn them in-depth if you ever need to. There
are whole books written just about these two programs and other books that just treat
regexes, so there is a lot to learn, definitely more than we can cover in this introducory
workshop.

4.5.4 Cutting and Joining

Before we leave you alone with textfiles, there are two more things to talk about. The
first has to do with cutting stuff up and joining it together.

You'll often have files which consists of columns and lines, representing some kind
of table. Have a look at tablefile:

$ cat tablefile

12.9 2.6 9.9 5.9 9.5 7.9 1.2
13.6 9.3 7.8 1.9 6.7 5.7 8.2
13.1 7.4 1.0 3.7 3.0 1.8 13.1
8.4 12.3 13.1 12.8 10.1 7.3 11.9
1.6 9.3 10.4 2.6 9.6 1.1 12.8
5.8 11.6 7.1 5.2 1.7 1.8 9.6
8.7 2.9 11.8 2.7 3.7 5.4 10.6
2.7 2.7 3.6 13.0 4.2 10.8 1.8
9.6 5.9 5.7 9.5 9.5 3.1 11.2

10.9 1.3 3.0 4.9 8.2 7.7 6.6
13.0 12.0 3.6 13.5 7.8 12.4 4.9
12.5 1.4 6.9 10.2 3.7 3.8
5.1 11.2 12.5 1.0 10.3 3.1
12.2 5.4 2.2 13.9 12.5 12.2
2.4 10.9 6.7 5.9 5.2 11.8
11.4 7.2 1.3 12.2 4.7 3.2 10.7
3.47.27.412.8 4.9 6.4 9.2

1.6
7.3
6.6
8.7

3.9 12.7 3.2 3.3 6.7 8.0 8.5
9.5 12.8 6.8 2.7 7.2 2.4 13.7
12.4 3.6 2.1 3.1 10.9 7.7 12.8
10.4 1.2 5.4 2.6 7.0 7.5 8.8

8.97.33.66.37.23.87.4
12.9 12.7 8.2 11.1 2.5 5.3 10.3
11.2 6.4 11.9 7.3 2.6 10.5 3.4

This file consists of 24 lines and each line has 7 colums. This could e.g. be the output of
a program which took measurements for 1 week, every hour, e.g. the second value in
the first column represents the measurement at 1am (we started at 00:00) on Monday.
All nice and fine, but the file is almost unreadable for a human. This is, where cut (1)
comes in: Its purpose is to cut out columns while leaving out others and its basic syntax
is:

61

cut OPTION... [FILE]...
It has some very useful options:

-d | --delimiter=DELIM This tells cut by which character fields in the file are sepa-
rated. In the case above they are separated by spaces, but it could be any other
character as well.

-f | --fields=LIST This tells cut which fields it should output.

--output-delimiter=STRING If you want the output to be delimited differently than
the input, you can use this option.

Thus, if you want just the the measurements of Wednesday, you can do:

$ cut -d" " -f3 tablefile
9.9

7.8

1.0

13.1

10.4

7.1

11.8

3.6

5.7

3.0

3.6

1.4

11.2

5.4
10.

©

B0 WO W N -
N OB 0N W

1.9

Or what about the files from Tuesday to Thursday:

$ cut -d" " -f2-4 --output-delimiter=""T|"T" tablefile
2.6 | 9.9 | 5.9
9.3 | 7.8 | 1.9
7.4 | 1.0 | 3.7

62

12.3 | 13.1 | 12.8
9.3 | 10.4 | 2.6
11.6 | 7.1 | 5.2
2.9 | 11.8 | 2.7
2.7 | 3.6 | 13.0
5.9 | 5.7 | 9.5
1.3 | 3.0 | 4.9
12.0 | 3.6 | 13.5
12.5 | 1.4 | 6.9
5.1 | 11.2 | 12.5
12.2 | 5.4 | 2.2
2.4 | 10.9 | 6.7
7.2 | 1.3 | 12.2
7.2 | 7.4 | 12.8
12.7 | 3.2 | 3.3
12.8 | 6.8 | 2.7
3.6 | 2.1 | 3.1
1.2 | 5.4 | 2.6
7.3 | 3.6 | 6.3
12.7 | 8.2 | 11.1
6.4 | 11.9 | 7.3

This looks much better!?! If you want to see only the measurements taken between
10am and 1pm, you can combine this with sed and pipes:

$ sed -n -e '11,14p' tablefile | cut -d" " -f2-4 --output-delimiter=""T| T"
12.0 | 3.6 | 13.5
12.5 | 1.4 | 6.9
5.1 | 11.2 | 12.5
12.2 | 5.4 | 2.2

First we select the hours we need and then we cut out the columns for Tuesday, Wednes-
day, and Thursday.

Another thing you may want to do is joining two files which share a common field.
To achieve this, you can use join(1):

$ cat joinl
Price ArtNr
10€ 1

20€ 2

100€ 3
400€ 4

$ cat join2

2I'The ~T in the command-line above means a tab-character. You can reproduce it on the command-line
by typing CTRL-V followed by a tab.

63

ArtNr Name

1 pendrive

2 cable

3 screen

4 laptop

$ join -1 2 -2 1 joinl join2
ArtNr Price Name
1 10€ pendrive

2 20€ cable

3 100€ screen

4 400€ laptop

So, you tell join that the second field in the first file (-1 2) and the first field in the
second file (-2 1) are identical and it should use them to join the files. There are some
other options and if you're interested play around a bit :)

4.5.5 Editors (a.k.a. Religions)

The last step on our journey through textfiles leads us into the fiercely disputed field of
text editors. As the title of this section suggests, there are people who vehemtly insist
that the editor they use is the only true one and all the others should be forbidden. It
may well be editors about which the first flamewars were fought and they are fought
until today with absolutely no progress or use.??

Our stance is: Taste differs and it’s no good arguing about it, but we want you to be
aware that you may encounter people who'll attack you just because you editor is not
theirs.

One reason why editors may be such a emotional topic is that the really powerful
ones take a considerable time to get used to and a lifetime to master. Thus, as soon
as you learned one of those you may be really proud of you on the one side and feel
like a total beginner if you encounter one of the others, which often leads to aversive
reactions.

There are editor which can need a GUI while others can work directly within a ter-
minal.

Common GUI editors on (GNU/)Linux systems are:

KWrite The KDE-Desktop’s lightweight editor.

gedit The GNOME-Desktop’s standard editor. If you left all the defaults intact when
you installed the GUI of you VM at the beginning of the course, gedit will be
installed on your system and just called “Text Editor”.

There are gazillions of others — if you're interested look around and try some of them
until you find something.

But as this course is about the command-line, we’re emphazising on editors you can
use in a terminal.

%you think we’re joking? Have a look at this.

64

https://en.wikipedia.org/wiki/Editor_war

nano This very small and intuitive editor is now installed by default on many (GNU/)Linux
systems.

vi(m) vi pronounced “Vee-Eye” and vim which stands for “Vi IMproved” and thus just
pronounced “vim” are one of the main editors used by many programmers and
sysadmins alike. They are incredibly powerful and have tons of features.

emacs The archrival to vi(m) for a long time, this giant of an editor is often described
as “actually an operating system which happens to include a text editor”. If you
put in the effort to learn to use it efficiently, you’ll be very productive when
working with text.

Instead of talking about features of these editors, we’ll let you learn them by their own
means. First do the following:

$ sudo apt install vim emacs

This will install both editors. Now choose which one you want to try out first.
If it is vim, type:

$ vimtutor

And you will be in an interactive tutorial, showing you the basics of vim.
In case you chose emacs, type:

$ emacs

After the editor started, type CTRL-H followed by T. The tutorial will start.

We won’t say anything else about editors; it is important to know how to use one of
them, but which one doesn’t really matter. Try a few, play around and stick with what
you like most :)

4.6 Processes

After so much textfiles, we start with something completely different. You have worked
a bit with commands by now, and maybe you wondered at some point, what they are.
In very general terms we speak of a program as a executable binary that can be run
on a CPU. Whenever you enter a command, the corresponding binary is loaded into
memory and then each instruction is executed by the CPU. As soon as a program runs,
it is called a process, i.e. a process is a program in execution. To make the difference a
bit clearer: You have only one program found at /bin/1s but you can run it in different
terminals at the same time, thus creating multiple processes from a single program.

If you want to see the processes currently running on your system the most widely
used tools are ps(1) and top(1). Their main difference is that top is interactive while
ps is not. To view all proces that are currently running from the terminal you are
working on, you can do:

65

$ ps

PID TTY TIME CMD
2351 pts/4 00:00:00 bash
4963 pts/4 00:00:00 ps

This tells you that there are just two processes associated with this terminal: your bash
and the ps process which has already finished as soon as you can read the output. The
displayed fields have the following meaning:

PID This is the “Process ID”. Each process is assigned a number that is unique on the
currently running system, to enable the system (and you) to refer to it unambigu-
ously — the name alone would not be sufficient.

TTY This tells you with which terminal®® the process is associated. As you are working
in a terminal emulator and not on a real terminal the “pts” in the output means
“pseudo-terminal”.

TIME This tells you how many CPU time the process has used cumulatively.
CMD Rather obviously, this is the command’s name.

To see all processes currently running on the system, use:

$ ps -elf

This creates a listing of all processes (-¢) in a long (-1) and full (-f) format to show a
lot of extra information.?* We don’t print it here, as the output is almost always more
than 100 lines.

ps has a myriad of options and tweaks available, so it is highly recommended to read
the man page. Additionally ps is a very old program and has acquired a lot of legacy-
stuff during the time. Thus, there are many options which do almost-but-not-exactly
the same, there are options with no dashes, one dash, or two dashes, etc. Therefore,
reading the man page in this case also provides you with a glance of history.

top is also a very old program, but it is still very useful. If you start it the process
will fill your screen and update periodically. The first will look something like this:

top - 14:11:33 up 4:48, 6 users, load average: 0.02, 0.02, 0.00

This tells you the current time, how long the system is running, how many users are
currently logged in and the load average. Note that a load average of 1 means one CPU
is fully loaded, i.e. if your computer has more than one CPU or more than one core, a
load of more than 1 is no problem.

By default, processes are sorted according to the %CPU column, which tells you how
much CPU they are using.

BTTY stands for teletypewriter, a rather old acronym.
ZYou'll find the options aux (without a dash!) doing something very similar in a lot of forums as these
are the traditional options. However, -elf should be used today.

66

To quit the program type Q.

Again it is a good idea to read the man page to get acquainted with the many things
you can do with top.

The processes you've seen so far run for only a very short time, e.g. the ouput of
1s appears immediately and you can issue the next command. However, in 4.5.1 we
already encountered a program which didn’t return to command-line on its own, i.e.
when we used tail -f. While this programs runs until you tell it to stop, there are
other programs which just take a long time and it may be very annoying if they block
your command-line all the time. Consider starting the Firefox web browser from the
command-line: It would be pretty bad if you had to choose between browsing and
working.

Thus, there are a lot of tools to control processes. First of all, there are keyboard
shortcuts which send signal to processes. Signals tell a process what to do, e.g. SIGTERM
tells the process to terminate. The keyboard shortcuts you can use are:

CTRL-C Send an interrupt signal (SIGINT) to the process currently blocking the
command-line. Usually, this leads to the process being terminated, as you

learned in 4.5.1 when you stopped the tail -f process.
CTRL-Z Sends a stop signal (SIGTSTP) to a process. A stopped process won’t react

to anything, unless you send it a SIGCONT (for “continue”) signal.

Some processes just need a long time or even don’t have a defined point in time when
they stop, e.g. compiling a large program takes a long time and your web browser
should only stop when you tell it to do so. How can you use such programs without
sacrificing your command-line? The easiest way is to start them with an ampersand
appended on the command-line, e.g.

$ firefox &

[1] 5133

$

[11+ Done firefox

$

As you can see, Firefox is started, the shell tells you that it has job number 1 and PID
5133. The ampersand tells the shell to start the process in the background and the next
time you press ENTER it will tell you that the job has finished. However, if you could
e.g. start a long backup job, put it in the background and the shell will inform you as
soon as its done, even if this takes hours or days (provided you don’t shut down your
computer or close the shell during this time as the job would be killed then).

The job number is also a unique number; not on the whole system, but just on the
current shell. As it is usually much smaller than a PID it is also easier to remember for
humans. To have a look how many jobs are currently associated with your bash, you
can use the jobs shell-builtin.

67

4.6.1 Process Control

Now that you know how to find out which processes are running, either on the system
or within your shell session and you know that you can start them in the background
and are able to send two signals to them using the keyboard.

However, there is more you can do with processes. The bash offers some builtin
functionality for this:

If you have a job running in the background, but you want it back on your shell, you
can use the fg builtin, e.g.

$ xclock &
[1] 5257
$ jobs
[1]1+ Running xclock &
$ fg 1
xclock
“Z
[1]+ Stopped xclock
$ bg 1
[1]1+ xclock &
$ ps
PID TTY TIME CMD
5130 pts/5 00:00:00 bash
5257 pts/5 00:00:00 xclock
5264 pts/5 00:00:00 ps

$ kill 5257
$
[1]+ Terminated xclock

In this example you start an xclock in the background. Then you put it into the fore-
ground using fg 1 where 1 is the job ID of the process. After this, you lost access
to your shell. The ~Z in the output above indicates pressing CTRL-Z, i.e. sending a
SIGTSTP to the process. After this you’ll realise that xclock will no longer interact with
you — the process is frozen. To let it continue in the background, you use the bg builtin.
Afterwards you find out xclock’s PID and send it a signal using ki11.%°

kill is one of the most important tools when doing process control. Read its man
page as well as signal(7) to understand what it does and how.

BThis is a bit of a mess: There is a program called ki11(1) which will be explained if you type “man
kill”. However, consider the following scenario: You have opened so many processes that you are
not allowed to start new ones and some of them are no longer reacting, so you have to terminate them
by sending them signals. However, kill(1) is a program and if you try to invoke it, this will be refused
as you’re not allowed to start any more processes. Therefore, there is a bash-builtin called ki1l which
does exactly the same, but as it is just a part of bash it does not need to start a whole new process and
will still be able to terminate the misbehaving ones. Thus, if you just type kill on the command-line
the bash-builtin will be used and not the program kil1(1). This has the further advantage that you
can use job IDs instead of PIDs. To tell kill that you're passing a job ID to it, prepend the number
with ‘%, i.e. in the above example: kill %1.

68

4.7 Variables and Your Environment

This will be covered in the course and added to the script at a later point.

69

	Installing a Virtual Machine
	Prerequisites
	Enable Virtualization
	Install Oracle VirtualBox
	Getting the Installation Image

	Installing a Virtual Machine Running Debian GNU/Linux

	UNIX, GNU, and Linux
	UNIX
	GNU
	Linux

	Basics
	Shells, Terminals, and Commands
	The Filesystem
	Help Utilities
	man
	info
	help and type
	–help and -h
	whatis and whereis
	The Internet Is Your Friend

	The Command-Line
	Moving and Looking Around
	Working with Files
	Working with Content
	Looking at Content
	Creating Content and I/O redirection

	Archiving and Compression
	Archiving with tar
	Compression Utilities
	Combining Archiving and Compressing Data

	Textfiles, Pipes, Wildcards, and a Little Bit of Regex
	Of Heads and Tails
	Sorting Text and Using Pipes
	Wild Cards and Gentle Regexes
	Cutting and Joining
	Editors (a.k.a. Religions)

	Processes
	Process Control

	Variables and Your Environment

